W symmetry in conformal field theory
暂无分享,去创建一个
[1] Chuan Yi Tang,et al. A 2.|E|-Bit Distributed Algorithm for the Directed Euler Trail Problem , 1993, Inf. Process. Lett..
[2] T. Hollowood,et al. Generalized Drinfel'd-Sokolov hierarchies , 1993 .
[3] C. Hull. W-Gravity , 1992, hep-th/9211113.
[4] A. Honecker,et al. Representations of W-Algebras with Two Generators and New Rational Models , 1992 .
[5] M. Grisaru,et al. LOOP CALCULATIONS IN TWO-DIMENSIONAL NONLOCAL FIELD THEORIES , 1992 .
[6] R. Blumenhagen. Covariant construction of N = 1 super W-algebras , 1992 .
[7] K. Ito. QUANTUM HAMILTONIAN REDUCTION AND WB ALGEBRA , 1992 .
[8] M. Niedermaier. Irrational free field resolutions forW(sl(n)) and extended Sugawara construction , 1992 .
[9] A. Honecker,et al. New N=1 Extended Superconformal Algebras with Two and Three Generators , 1992, hep-th/9207072.
[10] G. Watts,et al. Quantum Toda Theory and the Casimir Algebra of B 2 and C 2 , 1992 .
[11] Edward Frenkel,et al. Characters and fusion rules forW-algebras via quantized Drinfeld-Sokolov reduction , 1992 .
[12] A. Das,et al. Zero curvature condition and 2D gravity theories , 1992 .
[13] P. Sorba,et al. Super-Toda theories and W-algebras from superspace Wess-Zumino-Witten models , 1992 .
[14] S. Rama,et al. PHYSICAL STATES AND SCALING PROPERTIES OF W GRAVITIES AND W STRINGS , 1992 .
[15] Feng Yu,et al. Nonlinearly deformed Ŵ∞ algebra and second hamiltonian structure of KP hierarchy , 1992 .
[16] B. Feigin,et al. AFFINE KAC-MOODY ALGEBRAS AT THE CRITICAL LEVEL AND GELFAND-DIKII ALGEBRAS , 1992 .
[17] H. Ooguri,et al. The induced action ofW3 gravity , 1992 .
[18] E. Fradkin,et al. Results of the classification of superconformal algebras in two dimensions , 1992, hep-th/9203045.
[19] P. Nieuwenhuizen,et al. On the effective action of chiral W3 gravity , 1992 .
[20] A. Schellekens,et al. Complete classification of simple current modular invariants for RCFT's with a center (Zp)k , 1992 .
[21] J. Figueroa-O’Farrill,et al. ClassicalN=1W-superalgebras from Hamiltonian reduction , 1992 .
[22] T. Hollowood,et al. Generalized Drinfel'd-Sokolov hierarchies , 1992 .
[23] X. Shen. W INFINITY AND STRING THEORY , 1992, hep-th/9202072.
[24] G. Watts,et al. Duality in quantum Toda theory and W-algebras , 1992, hep-th/9202070.
[25] P. Bowcock. Exceptional superconformal algebras , 1992, hep-th/9202061.
[26] C. Pope,et al. On sibling and exceptional W-strings , 1992, hep-th/9202060.
[27] K. Ito,et al. Hamiltonian Reduction and Classical Extended Superconformal Algebras , 1992, hep-th/9202058.
[28] H. Nohara. Extended superconformal algebra as symmetry of super Toda field theory , 1992 .
[29] K. Ito. N = 2 superconformal CPn model , 1992 .
[30] J. Figueroa-O’Farrill,et al. The Conformal bootstrap and super W algebras , 1992 .
[31] K. Hornfeck. The minimal supersymmetric extension of WAn−1 , 1992 .
[32] C. Hull. Classical and Quantum W-Gravity , 1992, hep-th/9201057.
[33] C. Pope,et al. The complete spectrum of the WN string , 1992, hep-th/9201050.
[34] R. Varnhagen. Characters and representations of new fermionic W-algebras , 1992 .
[35] L. A. Ferreira,et al. SUPERSYMMETRIC CONSTRUCTION OF W ALGEBRAS FROM SUPER TODA AND WZNW THEORIES , 1992, hep-th/9201030.
[36] J. Figueroa-O’Farrill,et al. Classical N=2 W-superalgebras and supersymmetric Gel'fand-Dickey brackets , 1992 .
[37] P. Howe,et al. Lectures on W algebras and W gravity , 1991, hep-th/9112076.
[38] A. Wipf,et al. On the general structure of Hamiltonian reductions of the WZNW theory , 1991, hep-th/9112068.
[39] J. Goeree,et al. W-gravity from Chern-Simons theory , 1991, hep-th/9112060.
[40] M. Caselle. CHARACTER IDENTITIES IMPLIED BY SUPER-W3 INVARIANCE AND GENERALIZED COULOMB GAS DESCRIPTIONS , 1991 .
[41] T. Nakatsu,et al. COMMENTS ON GENERALIZED QUANTUM HAMILTONIAN REDUCTIONS , 1991 .
[42] E. Bergshoeff. Nonlinear super-W algebras at fixed central charge , 1991 .
[43] M. Vasiliev,et al. The structure of the super-W∞(λ) algebra , 1991 .
[44] C. Hull. W-gravity anomalies (I). Induced quantum W-gravity , 1991 .
[45] K. Stelle,et al. W symmetries: Gauging and geometry , 1991 .
[46] C. Ahn. c=5/2 FREE FERMION MODEL OF WB2 ALGEBRA , 1991, hep-th/9111061.
[47] S. Odake. UNITARY REPRESENTATIONS OF W INFINITY ALGEBRAS , 1991, hep-th/9111058.
[48] G. Watts,et al. On the classification of quantum W-algebras , 1991, hep-th/9111062.
[49] L. Romans,et al. On W3 strings , 1991 .
[50] J. Goeree,et al. The covariant W3 action , 1991, hep-th/9110073.
[51] P. Nieuwenhuizen,et al. Quantum w3 gravity in the chiral gauge , 1991 .
[52] L. Romans,et al. Anomaly-free W3 gravity and critical W3 strings , 1991 .
[53] N. Burroughs. Co-adjoint orbits of the generalised S1(2), S1(3) KdV hierarchies , 1991, hep-th/9110025.
[54] P. Bouwknegt,et al. Some aspects of free field resolutions in 2-D CFT with application to the quantum Drinfeld-Sokolov reduction , 1991, hep-th/9110007.
[55] C. Hull. The geometry of W-gravity , 1991 .
[56] C. Itzykson,et al. ClassicalW-algebras , 1991 .
[57] P. Howe,et al. Quantisation deforms w ∞ to W ∞ gravity , 1991 .
[58] N. Mavromatos,et al. Quantum coherence and two-dimensional black holes , 1991 .
[59] A. Polyakov,et al. INTERACTION OF DISCRETE STATES IN TWO-DIMENSIONAL STRING THEORY , 1991, hep-th/9109032.
[60] X. Shen,et al. The complete structure of WN from W∞ at c=−2 , 1991 .
[61] E. Kiritsis,et al. Beyond the Large N Limit: Non-linear W∞ as Symmetry of the SL(2,R)/U(1) Coset Model ∗ , 1991, hep-th/9109029.
[62] N. Mavromatos,et al. On the connection between Quantum Mechanics and the geometry of two-dimensional strings , 1991, hep-th/9109027.
[63] B. Spence,et al. Toda theories, the geometry of W algebras and minimal models , 1991 .
[64] A. Deckmyn,et al. W3 Constructions on Affine Lie Algebras , 1991, hep-th/9109010.
[65] M. B. Halpern. Recent developments in the Virasoro master equation , 1991 .
[66] Kris Thielemans,et al. A Mathematica package for computing operator product expansions , 1991 .
[67] J. Figueroa-O’Farrill,et al. Bihamiltonian structure of the KP hierarchy and the WKP algebra , 1991 .
[68] K. Yamagishi. Ŵ∞ algebra is anomaly-free at c=−2 , 1991 .
[69] R. Blumenhagen,et al. W-algebras with two and three generators , 1991 .
[70] G. Watts. WBn symmetry, hamiltonian reduction and B(0, n) toda theory , 1991 .
[71] A. Gerasimov,et al. On W-gravity in two dimensions , 1991 .
[72] E. Witten. Ground ring of two-dimensional string theory , 1991, hep-th/9108004.
[73] A. Miković. Hamiltonian construction of W-gravity actions , 1991, hep-th/9108002.
[74] K. Schoutens,et al. The full structure of the super W_3 algebra , 1991 .
[75] I. Kogan,et al. On the origin of W-algebras , 1991 .
[76] H. Nohara,et al. Classical and quantum extended superconformal algebra , 1991 .
[77] T. Inami,et al. N = 2 super KdV and super sine-Gordon equations based on Lie super algebra A(1,1) (1) , 1991 .
[78] L. Romans,et al. Polyakov construction of the N=2 super-W3 algebra , 1991 .
[79] J. Goeree. W-constraints in 2D quantum gravity , 1991 .
[80] K. Thielemans,et al. On the Casimir algebra of B2 , 1991 .
[81] Witten,et al. String theory and black holes. , 1991, Physical review. D, Particles and fields.
[82] L. Romans. The N = 2 super-W3 algebra , 1991 .
[83] Feng Yu,et al. Hamiltonian structure, (anti-)self-adjoint flows in the KP hierarchy and the W1 + ∞ and W∞ algebras , 1991 .
[84] A. Morozov. On the Concept of Universal $W$ Algebra , 1991 .
[85] M. Bershadsky. Conformal field theories via Hamiltonian reduction , 1991 .
[86] F. Bais,et al. Covariantly coupled chiral algebras , 1991 .
[87] L. Romans. Quasi-superconformal algebras in two dimensions and hamiltonian reduction , 1991 .
[88] Francisco J. Narganes-Quijano. On the parafermionic W(n) algebra , 1991 .
[89] J. Fuchs. Bosonic superconformal algebras from hamiltonian reduction , 1991 .
[90] J. Figueroa-O’Farrill,et al. W-superalgebras from supersymmetric Lax operators , 1991 .
[91] P. Bowcock. Quasi-primary fields and associativity of chiral algebras , 1991 .
[92] G. Sotkov,et al. Affine geometry and WN-Gravities , 1991 .
[93] Chuan-Jie Zhu,et al. Extrinsic geometry of strings and W-gravities , 1991 .
[94] P. Mathieu,et al. The W(3)(2) conformal algebra and the Boussinesq hierarchy , 1991 .
[95] G. Watts,et al. A Study of W algebras using Jacobi identities , 1991 .
[96] K. Yamagishi. A hamiltonian structure of KP hierarchy, W1+∞ algebra, and self-dual gravity☆ , 1991 .
[97] H. Kausch,et al. Extended conformal algebras generated by a multiplet of primary fields , 1991 .
[98] C. Hull. Higher-spin extended conformal algebras and W-gravities , 1991 .
[99] K. Ito. Quantum Hamiltonian reduction and N=2 coset models , 1991 .
[100] A. Schellekens,et al. Complete classification of simple current automorphisms , 1991 .
[101] S. Odake,et al. W1+∞ and super-W∞ algebras with SU(N) symmetry , 1991 .
[102] K. Schoutens,et al. Minimal super-WN algebras in coset conformal field theories , 1991 .
[103] T. Hollowood,et al. Supersymmetric Toda field theories , 1991 .
[104] A. Bilal. Introduction to W algebras , 1991 .
[105] L. Romans. Realisations of classical and quantum W 3 symmetry , 1991 .
[106] H. Kawai,et al. CONTINUUM SCHWINGER-DYSON EQUATIONS AND UNIVERSAL STRUCTURES IN TWO-DIMENSIONAL QUANTUM GRAVITY , 1991 .
[107] J. Figueroa-O’Farrill,et al. Extended superconformal algebras , 1991 .
[108] P. Bouwknegt,et al. On the free field resolutions for coset conformal field theories , 1991 .
[109] L. Romans,et al. A BRIEF HISTORY OF W , 1991 .
[110] P. Bouwknegt,et al. Free Field Approach to 2-Dimensional Conformal Field Theories , 1991 .
[111] T. Inami,et al. Super-Toda theory from WZNW theories , 1991 .
[112] K. Hornfeck. On the central charge for the W algebras , 1991 .
[113] P. Nieuwenhuizen,et al. Covariant formulation of classical W-gravity , 1991 .
[114] Francisco J. Narganes-Quijano. Bosonization of parafermions and related conformal models: WN-algebras , 1991 .
[115] A. Diaz,et al. A new explicit construction of W3 from the affine algebra A(1)2 , 1991 .
[116] H. Nohara,et al. Extended superconformal algebra from super Toda field theory , 1991 .
[117] H. Verlinde,et al. Loop equations and Virasoro con - straints in nonperturbative two - dimensional quantum gravity , 1991 .
[118] S. Mizoguchi. THE STRUCTURE OF REPRESENTATION FOR THE W(3) MINIMAL MODEL , 1991 .
[119] K. Hornfeck. Supersymmetrizing the W4 algebra , 1990 .
[120] Y. Matsuo,et al. EXTENDED CONFORMAL ALGEBRA WITH N=2 SUPERSYMMETRY , 1990 .
[121] I. Bakas. The structure of theW∞ algebra , 1990 .
[122] P. Nieuwenhuizen,et al. Covariant w∞ gravity and its reduction to WN gravity , 1990 .
[123] J. Figueroa-O’Farrill. On the homological construction of Casimir algebras , 1990 .
[124] E. Kiritsis,et al. Bosonic realization of a universal W-algebra and Z∞ parafermions , 1990 .
[125] A. Bilal. What is W geometry , 1990 .
[126] E. Kiritsis,et al. GRASSMANNIAN COSET MODELS AND UNITARY REPRESENTATIONS OF W , 1990 .
[127] V. Kac,et al. Branching functions for winding subalgebras and tensor products , 1990 .
[128] V. Kac. Infinite dimensional Lie algebras: Frontmatter , 1990 .
[129] T. Eguchi,et al. N = 2 superconformal models as topological field theories , 1990 .
[130] Boris Feigin,et al. Quantization of the Drinfeld-Sokolov reduction , 1990 .
[131] E. Witten. On the Structure of the Topological Phase of Two-dimensional Gravity , 1990 .
[132] M. Vasiliev,et al. The super-W∞(λ) algebra , 1990 .
[133] J. Figueroa-O’Farrill,et al. The spin 6 extended conformal algebra , 1990 .
[134] E. Ragoucy,et al. A coset construction for the super W3 algebra , 1990 .
[135] G. Watts. W-algebras and coset models , 1990 .
[136] Zongan Qiu,et al. 2D higher spin gravity and the multimatrix models , 1990 .
[137] A. Wipf,et al. Kac-Moody realization of W-algebras , 1990 .
[138] L. Romans,et al. W ∞ and the Racah-Wigner algebra , 1990 .
[139] G. Watts. WB ALGEBRA REPRESENTATION THEORY , 1990 .
[140] S. Panda,et al. Fractional-level current algebras and the classification of characters , 1990 .
[141] P. Bouwknegt,et al. Quantum group structure in the Fock space resolutions of $$\widehat{sl}(n)$$ representations , 1990 .
[142] P. Nieuwenhuizen,et al. A new gauge theory for W-type algebras☆ , 1990 .
[143] Q. Ho-kim,et al. TWISTED CHARACTERS AND PARTITION FUNCTIONS IN EXTENDED VIRASORO ALGEBRAS , 1990 .
[144] L. Romans,et al. A new higher-spin algebra and the lone-star product , 1990 .
[145] P. Mansfield. Conformally extended Toda theories , 1990 .
[146] C. Hull. Gauging the Zamolodchikov W-algebra , 1990 .
[147] A. Bilal. A note on super W-algebras , 1990 .
[148] M. Douglas,et al. Strings in less than one dimension and the generalized KdV hierarchies , 1990 .
[149] E. Sezgin,et al. W$_{\infty}$ gravity , 1990 .
[150] K. Intriligator. Bonus symmetry in conformal field theory , 1990 .
[151] A. Polyakov. GAUGE TRANSFORMATIONS AND DIFFEOMORPHISMS , 1990 .
[152] N. Yugami,et al. Bosonic Constructions of W3 Algebra , 1990 .
[153] L. Romans,et al. The complete structure of W , 1990 .
[154] A. Wipf,et al. Toda Theory and W-Algebra from a Gauged WZNW Point of View , 1990 .
[155] De-hai Zhang. Spin-4 extended conformal algebra , 1989 .
[156] A. Schellekens,et al. Extended Chiral Algebras and Modular Invariant Partition Functions , 1989 .
[157] I. Bakas. Higher spin fields and the Gelfand-Dickey algebra , 1989 .
[158] G. Watts. Determinant formulae for extended algebras in two-dimensional conformal field theory , 1989 .
[159] S. Mizoguchi. Non-unitarity theorem for the a type Wn algebra , 1989 .
[160] J. Gervais,et al. Non-linearly extended virasoro algebras: New prospects for building string theories , 1989 .
[161] H. Ooguri,et al. Hidden OSp(N,2) symmetries in superconformal field theories , 1989 .
[162] I. G. Halliday,et al. Bosonization of parafermionic conformal field theories , 1989 .
[163] I. Bakas. The Large n Limit of Extended Conformal Symmetries , 1989 .
[164] P. A. Griffin,et al. Bosonization of ZN parafermions , 1989 .
[165] A. Schellekens,et al. Modular invariants from simple currents. An explicit proof , 1989 .
[166] A. Bilal. A remark on the N→∞ limit of WN-algebras , 1989 .
[167] A. Wipf,et al. Liouville and Toda theories as conformally reduced WZNW theories , 1989 .
[168] Y. Matsuo. Remarks on fractal W-gravity , 1989 .
[169] Q. Ho-kim,et al. Twisted structures of extended virasoro algebras , 1989 .
[170] G. Moore,et al. Classical and quantum conformal field theory , 1989 .
[171] J. Gervais,et al. Systematic Construction of Conformal Theories with Higher Spin Virasoro Symmetries , 1989 .
[172] S. Mizoguchi. Determinant formula and unitarity for the W3 algebra , 1989 .
[173] V. Fateev,et al. Exactly soluble models of conformal quantum field theory associated with the simple Lie algebra D sub n , 1989 .
[174] G. Felder. BRST approach to minimal models , 1989 .
[175] B. Blok,et al. Extended current algebras and the coset construction of conformal field theories , 1989 .
[176] J. Gervais,et al. Extended C = ∞ conformal systems from classical toda field theories , 1989 .
[177] P. Nieuwenhuizen,et al. Quantum BRST charge for quadratically nonlinear Lie algebras , 1989 .
[178] P. Mathieu. Representation of the SO($N$) and U($N$) Superconformal Algebras via Miura Transformations , 1989 .
[179] D. Altschuler. Quantum Equivalence of Coset Space Models , 1989 .
[180] P. Christe,et al. $G(N$) X $G$(l) / $G(N$)+l Conformal Field Theories and Their Modular Invariant Partition Functions , 1989 .
[181] G. Moore,et al. Naturality in Conformal Field Theory , 1989 .
[182] Robbert Dijkgraaf,et al. The operator algebra of orbifold models , 1989 .
[183] Y. Matsuo,et al. Extended conformal algebras with N = 1 supersymmetry☆ , 1988 .
[184] P. Goddard,et al. Coset Constructions and Extended Conformal Algebras , 1988 .
[185] E. Verlinde,et al. Modular Invariance and the Fusion Algebra , 1988 .
[186] P. Goddard,et al. Factoring out free fermions and superconformal algebras , 1988 .
[187] Alexander M. Polyakov,et al. Fractal Structure of 2D Quantum Gravity , 1988 .
[188] B. Feigin,et al. A family of representations of affine Lie algebras , 1988 .
[189] I. Bakas. The Hamiltonian Structure of the Spin 4 Operator Algebra , 1988 .
[190] G. Moore,et al. Polynomial equations for rational conformal field theories , 1988 .
[191] Q. Ho-kim,et al. Twisted conformal field theories with Z3 invariance , 1988 .
[192] Paul Ginsparg,et al. Applied Conformal Field Theory , 1988, hep-th/9108028.
[193] G. Anderson,et al. Rationality in conformal field theory , 1988 .
[194] K. Hamada,et al. Spin-4 current algebra , 1988 .
[195] V. Kac,et al. Modular and conformal invariance constraints in representation theory of affine algebras , 1988 .
[196] A. Proeyen,et al. Superconformal algebras in two dimensions with N=4 , 1988 .
[197] P. Mathieu. Extended Classical Conformal Algebras and the Second Hamiltonian Structure of Lax Equations , 1988 .
[198] V. Kac,et al. Modular invariant representations of infinite-dimensional Lie algebras and superalgebras. , 1988, Proceedings of the National Academy of Sciences of the United States of America.
[199] P. Bouwknegt. Extended conformal algebras , 1988 .
[200] I. Bakas. Conformal invariance, the KdV equation and coadjoint orbits of the Virasoro algebra , 1988 .
[201] J. Gervais,et al. Systematic approach to conformal systems with extended virasoro symmetries , 1988 .
[202] P. Goddard,et al. Unitary construction of extended conformal algebras , 1988 .
[203] K. Yamagishi. The KP hierarchy and extended Virasoro algebras , 1988 .
[204] K. Schoutens. O(N)-extended superconformal field theory in superspace , 1988 .
[205] V. Pasquier. Continuum Limit of Lattice Models Built on Quantum Groups , 1988 .
[206] D. Friedan,et al. Phenomenology and conformal field theory or can string theory predict the weak mixing angle , 1988 .
[207] E. Verlinde,et al. Fusion Rules and Modular Transformations in 2D Conformal Field Theory , 1988 .
[208] F. Ravanini. An infinite class of new conformal field theories with extended algebras , 1988 .
[209] Bagger,et al. Virasoro algebras with central charge c>1. , 1988, Physical review letters.
[210] Edward Witten,et al. Topological sigma models , 1988 .
[211] Takahiro Hayashi,et al. Sugawara operators and Kac-Kazhdan conjecture , 1988 .
[212] D. Gepner. Space-time supersymmetry in compactified string theory and superconformal models , 1988 .
[213] Zongan Qiu,et al. Current Algebra and Conformal Discrete Series , 1988 .
[214] E. Kiritsis,et al. Structure of N=2 superconformally invariant unitary "minimal" theories: Operator algebra and correlation functions. , 1987, Physical review. D, Particles and fields.
[215] A. Polyakov. Quantum Gravity in Two Dimensions , 1987 .
[216] J. Thierry-Mieg. BRS analysis of Zamolodchikov's spin 2 and 3 current algebra , 1987 .
[217] V. Fateev,et al. Conformally Invariant Models of Two-dimensional {QFT} With $Z(N$) Symmetry , 1987 .
[218] J. Thierry-Mieg,et al. Level one representations of the simple affine Kac-Moody algebras in their homogeneous gradations , 1987 .
[219] C. Itzykson,et al. The A-D-E classification of minimal andA1(1) conformal invariant theories , 1987 .
[220] V. Fateev,et al. Representations of the algebra of “parafermion currents” of spin 4/3 in two-dimensional conformal field theory. Minimal models and the tricritical potts Z3 model , 1987 .
[221] Vincent Pasquier,et al. Operator Content of the Ade Lattice Models , 1987 .
[222] L. Dickey. On Hamiltonian and Lagrangian Formalisms for the KP‐Hierarchy of Integrable Equations , 1987 .
[223] A. Cappelli. Modular Invariant Partition Functions of Superconformal Theories , 1987 .
[224] F. Bais,et al. A classification of subgroup truncations of the bosonic string , 1987 .
[225] E. Witten,et al. String Theory on Group Manifolds , 1986 .
[226] S. Shenker,et al. Details of the non-unitarity proof for highest weight representations of the Virasoro algebra , 1986 .
[227] M. Wakimoto. Fock representations of the affine Lie algebraA1(1) , 1986 .
[228] Schellekens,et al. Conformal subalgebras of Kac-Moody algebras. , 1986, Physical review. D, Particles and fields.
[229] M. Bershadsky. Superconformal algebras in two dimensions with arbitrary N , 1986 .
[230] V. G. Knizhnik. Superconformal algebras in two dimensions , 1986 .
[231] P. Goddard,et al. Kac-Moody and Virasoro Algebras in Relation to Quantum Physics , 1986 .
[232] W. Nahm,et al. Vertex operators for non-simply-laced algebras , 1986 .
[233] Alexander B. Zamolodchikov,et al. Infinite additional symmetries in two-dimensional conformal quantum field theory , 1985 .
[234] J. Gervais. Infinite family of polynomial functions of the Virasoro generators with vanishing Poisson brackets , 1985 .
[235] V. Fateev,et al. Nonlocal (parafermion) currents in two-dimensional conformal quantum field theory and self-dual critical points in Z/sub N/-symmetric statistical systems , 1985 .
[236] V. V. Sokolov,et al. Lie algebras and equations of Korteweg-de Vries type , 1985 .
[237] B. Kupershmidt,et al. Super Korteweg-de Vries equations associated to super extensions of the Virasoro algebra , 1985 .
[238] A. Kent,et al. Virasoro algebras and coset space models , 1985 .
[239] C. Thorn. Computing the KAC determinant using dual model techniques and more about the no-ghost theorem , 1984 .
[240] V. G. Knizhnik,et al. Current Algebra and Wess-Zumino Model in Two-Dimensions , 1984 .
[241] E. Witten. Non-abelian bosonization in two dimensions , 1984 .
[242] V. Kac,et al. Infinite-dimensional Lie algebras, theta functions and modular forms , 1984 .
[243] A. Polyakov,et al. Infinite Conformal Symmetry in Two-Dimensional Quantum Field Theory - Nucl. Phys. B241, 333 (1984) , 1984 .
[244] S. Shenker,et al. Conformal invariance, unitarity, and critical exponents in two dimensions , 1984 .
[245] P. Mansfield. Light-cone quantisation of the Liouville and Toda field theories , 1983 .
[246] A. Neveu,et al. Dual string spectrum in Polyakov's quantization (II). Mode separation , 1982 .
[247] Loring W. Tu,et al. Differential forms in algebraic topology , 1982, Graduate texts in mathematics.
[248] D. B. Fuks,et al. Invariant skew-symmetric differential operators on the line and Verma modules over the Virasoro algebra , 1982 .
[249] V. Kac,et al. Basic representations of affine Lie algebras and dual resonance models , 1980 .
[250] David Kazhdan,et al. Structure of representations with highest weight of infinite-dimensional Lie algebras☆ , 1979 .
[251] Mark Adler,et al. On a trace functional for formal pseudo-differential operators and the symplectic structure of the Korteweg-devries type equations , 1978 .
[252] P. Nieuwenhuizen,et al. Properties of Conformal Supergravity , 1978 .
[253] Franco Magri,et al. A Simple model of the integrable Hamiltonian equation , 1978 .
[254] D. Horn,et al. Bosonization of the SU(N) Thirring models , 1976 .
[255] L. Brink,et al. Supersymmetric Strings and Color Confinement , 1976 .
[256] M. B. Halpern. Quantum "solitons" which are SU ( N ) fermions , 1975 .
[257] B. Zumino,et al. Consequences of anomalous ward identities , 1971 .
[258] A. Neveu,et al. FACTORIZABLE DUAL MODEL OF PIONS. , 1971 .
[259] R. Moody. Lie algebras associated with generalized Cartan matrices , 1967 .
[260] H. Kawai,et al. Infinite dimensional Grassmannian structure of two-dimensional quantum gravity , 1992 .
[261] P. Nieuwenhuizen,et al. Induced gauge theories and W gravity , 1992 .
[262] E. Frenkel. W -Algebras and Langlands-Drinfeld Correspondence , 1992 .
[263] A. Wipf,et al. W-algebras for generalized Toda theories , 1992 .
[264] E. Frenkel. Affine Kac-Moody algebras at the critical level and quantum Drinfeld-Sokolov reduction , 1991 .
[265] T. Inami. Super-W Algebras and Generalized Super-KdV Equations , 1991 .
[266] D. Friedan. The Space of Conformal Field Theories and the Space of Classical String Ground States , 1990 .
[267] I. Bakas. The structure of the $W_\infty$ algebra , 1990 .
[268] F. Malikov. Special vectors in Verma modules over affine algebras , 1989 .
[269] V. Fateev,et al. Exactly Solvable Models of Conformal Quantum Theory Associated With Simple Lie Algebra $D(N$). (In Russian) , 1989 .
[270] R. Goodman,et al. Higher-order Sugawara operators for affine Lie algebras , 1989 .
[271] H. Ooguri,et al. HeiddenSL(n) symmetry in conformal field theories , 1989 .
[272] A. Belavin. KdV-Type Equations and W-Algebras , 1989 .
[273] F. Bais,et al. COSET CONSTRUCTION FOR EXTENDED VIRASORO ALGEBRAS , 1988 .
[274] F. Bais,et al. Extensions of the Virasoro Algebra Constructed from Kac-Moody Algebras Using Higher Order Casimir Invariants , 1988 .
[275] F. Bais,et al. EXTENDED VIRASORO ALGEBRAS , 1988 .
[276] A. Zamolodchikov. Integrals of motion in scaling 3-state Potts model field theory , 1988 .
[277] J. Thierry-Mieg. Generalization of the Sugawara Construction , 1988 .
[278] V. Fateev,et al. The Models of Two-Dimensional Conformal Quantum Field Theory with Z(n) Symmetry , 1988 .
[279] J. Ambjorn. Strings, Fields and Critical Phenomena† , 1988 .
[280] Andrea Cappelli,et al. Modular Invariant Partition Functions in Two-Dimensions , 1987 .
[281] P. Bouwknegt. On the construction of modular invariant partition functions , 1987 .
[282] P. Goddard,et al. Virasoro algebras with central charge c < 1 , 1987 .
[283] M. Douglas,et al. G / H CONFORMAL FIELD THEORY , 1987 .
[284] V. Fateev,et al. Conformal quantum field theory models in two dimensions having Z3 symmetry , 1987 .
[285] D. Gepner. On the spectrum of 2D conformal field theories , 1987 .
[286] Zongan Qiu,et al. Modular invariant partition functions for parafermionic field theories , 1987 .
[287] D. Gepner. New conformal field theories associated with lie algebras and their partition functions , 1987 .
[288] D. Kastor. Modular Invariance in Superconformal Models , 1987 .
[289] Adrian Kent,et al. Unitary representations of the Virasoro and super-Virasoro algebras , 1986 .
[290] S. Shenker,et al. Conformal invariance, supersymmetry and string theory , 1986 .
[291] D. Friedan. Notes on String Theory and Two Dimensional Conformal Field Theory , 1986 .
[292] J. Cardy. Operator Content of Two-Dimensional Conformally Invariant Theories , 1986 .
[293] A. Rocha-Caridi. Vacuum Vector Representations of the Virasoro Algebra , 1985 .
[294] S. Shenker,et al. Conformal Invariance, Unitarity and Two-Dimensional Critical Exponents , 1985 .
[295] E. Corrigan. REPRESENTATIONS OF THE VIRASORO ALGEBRA , 1985 .
[296] D. B. Fuks,et al. Verma modules over the virasoro algebra , 1983 .
[297] G. Segal. Unitary representations of some infinite dimensional groups , 1981 .
[298] V. Kac. Contravariant form for infinite-dimensional Lie algebras and superalgebras , 1979 .
[299] M. B. Halpern,et al. New dual quark models , 1971 .
[300] M. B. Halpern. The Two faces of a dual pion - quark model , 1971 .
[301] P. Ramond. Dual Theory for Free Fermions , 1971 .
[302] A. Sudbery,et al. On Gell-Mann's λ-matrices,d- andf-tensors, octets, and parametrizations ofS U (3) , 1968 .
[303] H. Sugawara. A Field Theory of Currents , 1968 .
[304] Daniel H. Christensen,et al. The complete structure of furan , 1962 .