W symmetry in conformal field theory

[1]  Chuan Yi Tang,et al.  A 2.|E|-Bit Distributed Algorithm for the Directed Euler Trail Problem , 1993, Inf. Process. Lett..

[2]  T. Hollowood,et al.  Generalized Drinfel'd-Sokolov hierarchies , 1993 .

[3]  C. Hull W-Gravity , 1992, hep-th/9211113.

[4]  A. Honecker,et al.  Representations of W-Algebras with Two Generators and New Rational Models , 1992 .

[5]  M. Grisaru,et al.  LOOP CALCULATIONS IN TWO-DIMENSIONAL NONLOCAL FIELD THEORIES , 1992 .

[6]  R. Blumenhagen Covariant construction of N = 1 super W-algebras , 1992 .

[7]  K. Ito QUANTUM HAMILTONIAN REDUCTION AND WB ALGEBRA , 1992 .

[8]  M. Niedermaier Irrational free field resolutions forW(sl(n)) and extended Sugawara construction , 1992 .

[9]  A. Honecker,et al.  New N=1 Extended Superconformal Algebras with Two and Three Generators , 1992, hep-th/9207072.

[10]  G. Watts,et al.  Quantum Toda Theory and the Casimir Algebra of B 2 and C 2 , 1992 .

[11]  Edward Frenkel,et al.  Characters and fusion rules forW-algebras via quantized Drinfeld-Sokolov reduction , 1992 .

[12]  A. Das,et al.  Zero curvature condition and 2D gravity theories , 1992 .

[13]  P. Sorba,et al.  Super-Toda theories and W-algebras from superspace Wess-Zumino-Witten models , 1992 .

[14]  S. Rama,et al.  PHYSICAL STATES AND SCALING PROPERTIES OF W GRAVITIES AND W STRINGS , 1992 .

[15]  Feng Yu,et al.  Nonlinearly deformed Ŵ∞ algebra and second hamiltonian structure of KP hierarchy , 1992 .

[16]  B. Feigin,et al.  AFFINE KAC-MOODY ALGEBRAS AT THE CRITICAL LEVEL AND GELFAND-DIKII ALGEBRAS , 1992 .

[17]  H. Ooguri,et al.  The induced action ofW3 gravity , 1992 .

[18]  E. Fradkin,et al.  Results of the classification of superconformal algebras in two dimensions , 1992, hep-th/9203045.

[19]  P. Nieuwenhuizen,et al.  On the effective action of chiral W3 gravity , 1992 .

[20]  A. Schellekens,et al.  Complete classification of simple current modular invariants for RCFT's with a center (Zp)k , 1992 .

[21]  J. Figueroa-O’Farrill,et al.  ClassicalN=1W-superalgebras from Hamiltonian reduction , 1992 .

[22]  T. Hollowood,et al.  Generalized Drinfel'd-Sokolov hierarchies , 1992 .

[23]  X. Shen W INFINITY AND STRING THEORY , 1992, hep-th/9202072.

[24]  G. Watts,et al.  Duality in quantum Toda theory and W-algebras , 1992, hep-th/9202070.

[25]  P. Bowcock Exceptional superconformal algebras , 1992, hep-th/9202061.

[26]  C. Pope,et al.  On sibling and exceptional W-strings , 1992, hep-th/9202060.

[27]  K. Ito,et al.  Hamiltonian Reduction and Classical Extended Superconformal Algebras , 1992, hep-th/9202058.

[28]  H. Nohara Extended superconformal algebra as symmetry of super Toda field theory , 1992 .

[29]  K. Ito N = 2 superconformal CPn model , 1992 .

[30]  J. Figueroa-O’Farrill,et al.  The Conformal bootstrap and super W algebras , 1992 .

[31]  K. Hornfeck The minimal supersymmetric extension of WAn−1 , 1992 .

[32]  C. Hull Classical and Quantum W-Gravity , 1992, hep-th/9201057.

[33]  C. Pope,et al.  The complete spectrum of the WN string , 1992, hep-th/9201050.

[34]  R. Varnhagen Characters and representations of new fermionic W-algebras , 1992 .

[35]  L. A. Ferreira,et al.  SUPERSYMMETRIC CONSTRUCTION OF W ALGEBRAS FROM SUPER TODA AND WZNW THEORIES , 1992, hep-th/9201030.

[36]  J. Figueroa-O’Farrill,et al.  Classical N=2 W-superalgebras and supersymmetric Gel'fand-Dickey brackets , 1992 .

[37]  P. Howe,et al.  Lectures on W algebras and W gravity , 1991, hep-th/9112076.

[38]  A. Wipf,et al.  On the general structure of Hamiltonian reductions of the WZNW theory , 1991, hep-th/9112068.

[39]  J. Goeree,et al.  W-gravity from Chern-Simons theory , 1991, hep-th/9112060.

[40]  M. Caselle CHARACTER IDENTITIES IMPLIED BY SUPER-W3 INVARIANCE AND GENERALIZED COULOMB GAS DESCRIPTIONS , 1991 .

[41]  T. Nakatsu,et al.  COMMENTS ON GENERALIZED QUANTUM HAMILTONIAN REDUCTIONS , 1991 .

[42]  E. Bergshoeff Nonlinear super-W algebras at fixed central charge , 1991 .

[43]  M. Vasiliev,et al.  The structure of the super-W∞(λ) algebra , 1991 .

[44]  C. Hull W-gravity anomalies (I). Induced quantum W-gravity , 1991 .

[45]  K. Stelle,et al.  W symmetries: Gauging and geometry , 1991 .

[46]  C. Ahn c=5/2 FREE FERMION MODEL OF WB2 ALGEBRA , 1991, hep-th/9111061.

[47]  S. Odake UNITARY REPRESENTATIONS OF W INFINITY ALGEBRAS , 1991, hep-th/9111058.

[48]  G. Watts,et al.  On the classification of quantum W-algebras , 1991, hep-th/9111062.

[49]  L. Romans,et al.  On W3 strings , 1991 .

[50]  J. Goeree,et al.  The covariant W3 action , 1991, hep-th/9110073.

[51]  P. Nieuwenhuizen,et al.  Quantum w3 gravity in the chiral gauge , 1991 .

[52]  L. Romans,et al.  Anomaly-free W3 gravity and critical W3 strings , 1991 .

[53]  N. Burroughs Co-adjoint orbits of the generalised S1(2), S1(3) KdV hierarchies , 1991, hep-th/9110025.

[54]  P. Bouwknegt,et al.  Some aspects of free field resolutions in 2-D CFT with application to the quantum Drinfeld-Sokolov reduction , 1991, hep-th/9110007.

[55]  C. Hull The geometry of W-gravity , 1991 .

[56]  C. Itzykson,et al.  ClassicalW-algebras , 1991 .

[57]  P. Howe,et al.  Quantisation deforms w ∞ to W ∞ gravity , 1991 .

[58]  N. Mavromatos,et al.  Quantum coherence and two-dimensional black holes , 1991 .

[59]  A. Polyakov,et al.  INTERACTION OF DISCRETE STATES IN TWO-DIMENSIONAL STRING THEORY , 1991, hep-th/9109032.

[60]  X. Shen,et al.  The complete structure of WN from W∞ at c=−2 , 1991 .

[61]  E. Kiritsis,et al.  Beyond the Large N Limit: Non-linear W∞ as Symmetry of the SL(2,R)/U(1) Coset Model ∗ , 1991, hep-th/9109029.

[62]  N. Mavromatos,et al.  On the connection between Quantum Mechanics and the geometry of two-dimensional strings , 1991, hep-th/9109027.

[63]  B. Spence,et al.  Toda theories, the geometry of W algebras and minimal models , 1991 .

[64]  A. Deckmyn,et al.  W3 Constructions on Affine Lie Algebras , 1991, hep-th/9109010.

[65]  M. B. Halpern Recent developments in the Virasoro master equation , 1991 .

[66]  Kris Thielemans,et al.  A Mathematica package for computing operator product expansions , 1991 .

[67]  J. Figueroa-O’Farrill,et al.  Bihamiltonian structure of the KP hierarchy and the WKP algebra , 1991 .

[68]  K. Yamagishi Ŵ∞ algebra is anomaly-free at c=−2 , 1991 .

[69]  R. Blumenhagen,et al.  W-algebras with two and three generators , 1991 .

[70]  G. Watts WBn symmetry, hamiltonian reduction and B(0, n) toda theory , 1991 .

[71]  A. Gerasimov,et al.  On W-gravity in two dimensions , 1991 .

[72]  E. Witten Ground ring of two-dimensional string theory , 1991, hep-th/9108004.

[73]  A. Miković Hamiltonian construction of W-gravity actions , 1991, hep-th/9108002.

[74]  K. Schoutens,et al.  The full structure of the super W_3 algebra , 1991 .

[75]  I. Kogan,et al.  On the origin of W-algebras , 1991 .

[76]  H. Nohara,et al.  Classical and quantum extended superconformal algebra , 1991 .

[77]  T. Inami,et al.  N = 2 super KdV and super sine-Gordon equations based on Lie super algebra A(1,1) (1) , 1991 .

[78]  L. Romans,et al.  Polyakov construction of the N=2 super-W3 algebra , 1991 .

[79]  J. Goeree W-constraints in 2D quantum gravity , 1991 .

[80]  K. Thielemans,et al.  On the Casimir algebra of B2 , 1991 .

[81]  Witten,et al.  String theory and black holes. , 1991, Physical review. D, Particles and fields.

[82]  L. Romans The N = 2 super-W3 algebra , 1991 .

[83]  Feng Yu,et al.  Hamiltonian structure, (anti-)self-adjoint flows in the KP hierarchy and the W1 + ∞ and W∞ algebras , 1991 .

[84]  A. Morozov On the Concept of Universal $W$ Algebra , 1991 .

[85]  M. Bershadsky Conformal field theories via Hamiltonian reduction , 1991 .

[86]  F. Bais,et al.  Covariantly coupled chiral algebras , 1991 .

[87]  L. Romans Quasi-superconformal algebras in two dimensions and hamiltonian reduction , 1991 .

[88]  Francisco J. Narganes-Quijano On the parafermionic W(n) algebra , 1991 .

[89]  J. Fuchs Bosonic superconformal algebras from hamiltonian reduction , 1991 .

[90]  J. Figueroa-O’Farrill,et al.  W-superalgebras from supersymmetric Lax operators , 1991 .

[91]  P. Bowcock Quasi-primary fields and associativity of chiral algebras , 1991 .

[92]  G. Sotkov,et al.  Affine geometry and WN-Gravities , 1991 .

[93]  Chuan-Jie Zhu,et al.  Extrinsic geometry of strings and W-gravities , 1991 .

[94]  P. Mathieu,et al.  The W(3)(2) conformal algebra and the Boussinesq hierarchy , 1991 .

[95]  G. Watts,et al.  A Study of W algebras using Jacobi identities , 1991 .

[96]  K. Yamagishi A hamiltonian structure of KP hierarchy, W1+∞ algebra, and self-dual gravity☆ , 1991 .

[97]  H. Kausch,et al.  Extended conformal algebras generated by a multiplet of primary fields , 1991 .

[98]  C. Hull Higher-spin extended conformal algebras and W-gravities , 1991 .

[99]  K. Ito Quantum Hamiltonian reduction and N=2 coset models , 1991 .

[100]  A. Schellekens,et al.  Complete classification of simple current automorphisms , 1991 .

[101]  S. Odake,et al.  W1+∞ and super-W∞ algebras with SU(N) symmetry , 1991 .

[102]  K. Schoutens,et al.  Minimal super-WN algebras in coset conformal field theories , 1991 .

[103]  T. Hollowood,et al.  Supersymmetric Toda field theories , 1991 .

[104]  A. Bilal Introduction to W algebras , 1991 .

[105]  L. Romans Realisations of classical and quantum W 3 symmetry , 1991 .

[106]  H. Kawai,et al.  CONTINUUM SCHWINGER-DYSON EQUATIONS AND UNIVERSAL STRUCTURES IN TWO-DIMENSIONAL QUANTUM GRAVITY , 1991 .

[107]  J. Figueroa-O’Farrill,et al.  Extended superconformal algebras , 1991 .

[108]  P. Bouwknegt,et al.  On the free field resolutions for coset conformal field theories , 1991 .

[109]  L. Romans,et al.  A BRIEF HISTORY OF W , 1991 .

[110]  P. Bouwknegt,et al.  Free Field Approach to 2-Dimensional Conformal Field Theories , 1991 .

[111]  T. Inami,et al.  Super-Toda theory from WZNW theories , 1991 .

[112]  K. Hornfeck On the central charge for the W algebras , 1991 .

[113]  P. Nieuwenhuizen,et al.  Covariant formulation of classical W-gravity , 1991 .

[114]  Francisco J. Narganes-Quijano Bosonization of parafermions and related conformal models: WN-algebras , 1991 .

[115]  A. Diaz,et al.  A new explicit construction of W3 from the affine algebra A(1)2 , 1991 .

[116]  H. Nohara,et al.  Extended superconformal algebra from super Toda field theory , 1991 .

[117]  H. Verlinde,et al.  Loop equations and Virasoro con - straints in nonperturbative two - dimensional quantum gravity , 1991 .

[118]  S. Mizoguchi THE STRUCTURE OF REPRESENTATION FOR THE W(3) MINIMAL MODEL , 1991 .

[119]  K. Hornfeck Supersymmetrizing the W4 algebra , 1990 .

[120]  Y. Matsuo,et al.  EXTENDED CONFORMAL ALGEBRA WITH N=2 SUPERSYMMETRY , 1990 .

[121]  I. Bakas The structure of theW∞ algebra , 1990 .

[122]  P. Nieuwenhuizen,et al.  Covariant w∞ gravity and its reduction to WN gravity , 1990 .

[123]  J. Figueroa-O’Farrill On the homological construction of Casimir algebras , 1990 .

[124]  E. Kiritsis,et al.  Bosonic realization of a universal W-algebra and Z∞ parafermions , 1990 .

[125]  A. Bilal What is W geometry , 1990 .

[126]  E. Kiritsis,et al.  GRASSMANNIAN COSET MODELS AND UNITARY REPRESENTATIONS OF W , 1990 .

[127]  V. Kac,et al.  Branching functions for winding subalgebras and tensor products , 1990 .

[128]  V. Kac Infinite dimensional Lie algebras: Frontmatter , 1990 .

[129]  T. Eguchi,et al.  N = 2 superconformal models as topological field theories , 1990 .

[130]  Boris Feigin,et al.  Quantization of the Drinfeld-Sokolov reduction , 1990 .

[131]  E. Witten On the Structure of the Topological Phase of Two-dimensional Gravity , 1990 .

[132]  M. Vasiliev,et al.  The super-W∞(λ) algebra , 1990 .

[133]  J. Figueroa-O’Farrill,et al.  The spin 6 extended conformal algebra , 1990 .

[134]  E. Ragoucy,et al.  A coset construction for the super W3 algebra , 1990 .

[135]  G. Watts W-algebras and coset models , 1990 .

[136]  Zongan Qiu,et al.  2D higher spin gravity and the multimatrix models , 1990 .

[137]  A. Wipf,et al.  Kac-Moody realization of W-algebras , 1990 .

[138]  L. Romans,et al.  W ∞ and the Racah-Wigner algebra , 1990 .

[139]  G. Watts WB ALGEBRA REPRESENTATION THEORY , 1990 .

[140]  S. Panda,et al.  Fractional-level current algebras and the classification of characters , 1990 .

[141]  P. Bouwknegt,et al.  Quantum group structure in the Fock space resolutions of $$\widehat{sl}(n)$$ representations , 1990 .

[142]  P. Nieuwenhuizen,et al.  A new gauge theory for W-type algebras☆ , 1990 .

[143]  Q. Ho-kim,et al.  TWISTED CHARACTERS AND PARTITION FUNCTIONS IN EXTENDED VIRASORO ALGEBRAS , 1990 .

[144]  L. Romans,et al.  A new higher-spin algebra and the lone-star product , 1990 .

[145]  P. Mansfield Conformally extended Toda theories , 1990 .

[146]  C. Hull Gauging the Zamolodchikov W-algebra , 1990 .

[147]  A. Bilal A note on super W-algebras , 1990 .

[148]  M. Douglas,et al.  Strings in less than one dimension and the generalized KdV hierarchies , 1990 .

[149]  E. Sezgin,et al.  W$_{\infty}$ gravity , 1990 .

[150]  K. Intriligator Bonus symmetry in conformal field theory , 1990 .

[151]  A. Polyakov GAUGE TRANSFORMATIONS AND DIFFEOMORPHISMS , 1990 .

[152]  N. Yugami,et al.  Bosonic Constructions of W3 Algebra , 1990 .

[153]  L. Romans,et al.  The complete structure of W , 1990 .

[154]  A. Wipf,et al.  Toda Theory and W-Algebra from a Gauged WZNW Point of View , 1990 .

[155]  De-hai Zhang Spin-4 extended conformal algebra , 1989 .

[156]  A. Schellekens,et al.  Extended Chiral Algebras and Modular Invariant Partition Functions , 1989 .

[157]  I. Bakas Higher spin fields and the Gelfand-Dickey algebra , 1989 .

[158]  G. Watts Determinant formulae for extended algebras in two-dimensional conformal field theory , 1989 .

[159]  S. Mizoguchi Non-unitarity theorem for the a type Wn algebra , 1989 .

[160]  J. Gervais,et al.  Non-linearly extended virasoro algebras: New prospects for building string theories , 1989 .

[161]  H. Ooguri,et al.  Hidden OSp(N,2) symmetries in superconformal field theories , 1989 .

[162]  I. G. Halliday,et al.  Bosonization of parafermionic conformal field theories , 1989 .

[163]  I. Bakas The Large n Limit of Extended Conformal Symmetries , 1989 .

[164]  P. A. Griffin,et al.  Bosonization of ZN parafermions , 1989 .

[165]  A. Schellekens,et al.  Modular invariants from simple currents. An explicit proof , 1989 .

[166]  A. Bilal A remark on the N→∞ limit of WN-algebras , 1989 .

[167]  A. Wipf,et al.  Liouville and Toda theories as conformally reduced WZNW theories , 1989 .

[168]  Y. Matsuo Remarks on fractal W-gravity , 1989 .

[169]  Q. Ho-kim,et al.  Twisted structures of extended virasoro algebras , 1989 .

[170]  G. Moore,et al.  Classical and quantum conformal field theory , 1989 .

[171]  J. Gervais,et al.  Systematic Construction of Conformal Theories with Higher Spin Virasoro Symmetries , 1989 .

[172]  S. Mizoguchi Determinant formula and unitarity for the W3 algebra , 1989 .

[173]  V. Fateev,et al.  Exactly soluble models of conformal quantum field theory associated with the simple Lie algebra D sub n , 1989 .

[174]  G. Felder BRST approach to minimal models , 1989 .

[175]  B. Blok,et al.  Extended current algebras and the coset construction of conformal field theories , 1989 .

[176]  J. Gervais,et al.  Extended C = ∞ conformal systems from classical toda field theories , 1989 .

[177]  P. Nieuwenhuizen,et al.  Quantum BRST charge for quadratically nonlinear Lie algebras , 1989 .

[178]  P. Mathieu Representation of the SO($N$) and U($N$) Superconformal Algebras via Miura Transformations , 1989 .

[179]  D. Altschuler Quantum Equivalence of Coset Space Models , 1989 .

[180]  P. Christe,et al.  $G(N$) X $G$(l) / $G(N$)+l Conformal Field Theories and Their Modular Invariant Partition Functions , 1989 .

[181]  G. Moore,et al.  Naturality in Conformal Field Theory , 1989 .

[182]  Robbert Dijkgraaf,et al.  The operator algebra of orbifold models , 1989 .

[183]  Y. Matsuo,et al.  Extended conformal algebras with N = 1 supersymmetry☆ , 1988 .

[184]  P. Goddard,et al.  Coset Constructions and Extended Conformal Algebras , 1988 .

[185]  E. Verlinde,et al.  Modular Invariance and the Fusion Algebra , 1988 .

[186]  P. Goddard,et al.  Factoring out free fermions and superconformal algebras , 1988 .

[187]  Alexander M. Polyakov,et al.  Fractal Structure of 2D Quantum Gravity , 1988 .

[188]  B. Feigin,et al.  A family of representations of affine Lie algebras , 1988 .

[189]  I. Bakas The Hamiltonian Structure of the Spin 4 Operator Algebra , 1988 .

[190]  G. Moore,et al.  Polynomial equations for rational conformal field theories , 1988 .

[191]  Q. Ho-kim,et al.  Twisted conformal field theories with Z3 invariance , 1988 .

[192]  Paul Ginsparg,et al.  Applied Conformal Field Theory , 1988, hep-th/9108028.

[193]  G. Anderson,et al.  Rationality in conformal field theory , 1988 .

[194]  K. Hamada,et al.  Spin-4 current algebra , 1988 .

[195]  V. Kac,et al.  Modular and conformal invariance constraints in representation theory of affine algebras , 1988 .

[196]  A. Proeyen,et al.  Superconformal algebras in two dimensions with N=4 , 1988 .

[197]  P. Mathieu Extended Classical Conformal Algebras and the Second Hamiltonian Structure of Lax Equations , 1988 .

[198]  V. Kac,et al.  Modular invariant representations of infinite-dimensional Lie algebras and superalgebras. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[199]  P. Bouwknegt Extended conformal algebras , 1988 .

[200]  I. Bakas Conformal invariance, the KdV equation and coadjoint orbits of the Virasoro algebra , 1988 .

[201]  J. Gervais,et al.  Systematic approach to conformal systems with extended virasoro symmetries , 1988 .

[202]  P. Goddard,et al.  Unitary construction of extended conformal algebras , 1988 .

[203]  K. Yamagishi The KP hierarchy and extended Virasoro algebras , 1988 .

[204]  K. Schoutens O(N)-extended superconformal field theory in superspace , 1988 .

[205]  V. Pasquier Continuum Limit of Lattice Models Built on Quantum Groups , 1988 .

[206]  D. Friedan,et al.  Phenomenology and conformal field theory or can string theory predict the weak mixing angle , 1988 .

[207]  E. Verlinde,et al.  Fusion Rules and Modular Transformations in 2D Conformal Field Theory , 1988 .

[208]  F. Ravanini An infinite class of new conformal field theories with extended algebras , 1988 .

[209]  Bagger,et al.  Virasoro algebras with central charge c>1. , 1988, Physical review letters.

[210]  Edward Witten,et al.  Topological sigma models , 1988 .

[211]  Takahiro Hayashi,et al.  Sugawara operators and Kac-Kazhdan conjecture , 1988 .

[212]  D. Gepner Space-time supersymmetry in compactified string theory and superconformal models , 1988 .

[213]  Zongan Qiu,et al.  Current Algebra and Conformal Discrete Series , 1988 .

[214]  E. Kiritsis,et al.  Structure of N=2 superconformally invariant unitary "minimal" theories: Operator algebra and correlation functions. , 1987, Physical review. D, Particles and fields.

[215]  A. Polyakov Quantum Gravity in Two Dimensions , 1987 .

[216]  J. Thierry-Mieg BRS analysis of Zamolodchikov's spin 2 and 3 current algebra , 1987 .

[217]  V. Fateev,et al.  Conformally Invariant Models of Two-dimensional {QFT} With $Z(N$) Symmetry , 1987 .

[218]  J. Thierry-Mieg,et al.  Level one representations of the simple affine Kac-Moody algebras in their homogeneous gradations , 1987 .

[219]  C. Itzykson,et al.  The A-D-E classification of minimal andA1(1) conformal invariant theories , 1987 .

[220]  V. Fateev,et al.  Representations of the algebra of “parafermion currents” of spin 4/3 in two-dimensional conformal field theory. Minimal models and the tricritical potts Z3 model , 1987 .

[221]  Vincent Pasquier,et al.  Operator Content of the Ade Lattice Models , 1987 .

[222]  L. Dickey On Hamiltonian and Lagrangian Formalisms for the KP‐Hierarchy of Integrable Equations , 1987 .

[223]  A. Cappelli Modular Invariant Partition Functions of Superconformal Theories , 1987 .

[224]  F. Bais,et al.  A classification of subgroup truncations of the bosonic string , 1987 .

[225]  E. Witten,et al.  String Theory on Group Manifolds , 1986 .

[226]  S. Shenker,et al.  Details of the non-unitarity proof for highest weight representations of the Virasoro algebra , 1986 .

[227]  M. Wakimoto Fock representations of the affine Lie algebraA1(1) , 1986 .

[228]  Schellekens,et al.  Conformal subalgebras of Kac-Moody algebras. , 1986, Physical review. D, Particles and fields.

[229]  M. Bershadsky Superconformal algebras in two dimensions with arbitrary N , 1986 .

[230]  V. G. Knizhnik Superconformal algebras in two dimensions , 1986 .

[231]  P. Goddard,et al.  Kac-Moody and Virasoro Algebras in Relation to Quantum Physics , 1986 .

[232]  W. Nahm,et al.  Vertex operators for non-simply-laced algebras , 1986 .

[233]  Alexander B. Zamolodchikov,et al.  Infinite additional symmetries in two-dimensional conformal quantum field theory , 1985 .

[234]  J. Gervais Infinite family of polynomial functions of the Virasoro generators with vanishing Poisson brackets , 1985 .

[235]  V. Fateev,et al.  Nonlocal (parafermion) currents in two-dimensional conformal quantum field theory and self-dual critical points in Z/sub N/-symmetric statistical systems , 1985 .

[236]  V. V. Sokolov,et al.  Lie algebras and equations of Korteweg-de Vries type , 1985 .

[237]  B. Kupershmidt,et al.  Super Korteweg-de Vries equations associated to super extensions of the Virasoro algebra , 1985 .

[238]  A. Kent,et al.  Virasoro algebras and coset space models , 1985 .

[239]  C. Thorn Computing the KAC determinant using dual model techniques and more about the no-ghost theorem , 1984 .

[240]  V. G. Knizhnik,et al.  Current Algebra and Wess-Zumino Model in Two-Dimensions , 1984 .

[241]  E. Witten Non-abelian bosonization in two dimensions , 1984 .

[242]  V. Kac,et al.  Infinite-dimensional Lie algebras, theta functions and modular forms , 1984 .

[243]  A. Polyakov,et al.  Infinite Conformal Symmetry in Two-Dimensional Quantum Field Theory - Nucl. Phys. B241, 333 (1984) , 1984 .

[244]  S. Shenker,et al.  Conformal invariance, unitarity, and critical exponents in two dimensions , 1984 .

[245]  P. Mansfield Light-cone quantisation of the Liouville and Toda field theories , 1983 .

[246]  A. Neveu,et al.  Dual string spectrum in Polyakov's quantization (II). Mode separation , 1982 .

[247]  Loring W. Tu,et al.  Differential forms in algebraic topology , 1982, Graduate texts in mathematics.

[248]  D. B. Fuks,et al.  Invariant skew-symmetric differential operators on the line and Verma modules over the Virasoro algebra , 1982 .

[249]  V. Kac,et al.  Basic representations of affine Lie algebras and dual resonance models , 1980 .

[250]  David Kazhdan,et al.  Structure of representations with highest weight of infinite-dimensional Lie algebras☆ , 1979 .

[251]  Mark Adler,et al.  On a trace functional for formal pseudo-differential operators and the symplectic structure of the Korteweg-devries type equations , 1978 .

[252]  P. Nieuwenhuizen,et al.  Properties of Conformal Supergravity , 1978 .

[253]  Franco Magri,et al.  A Simple model of the integrable Hamiltonian equation , 1978 .

[254]  D. Horn,et al.  Bosonization of the SU(N) Thirring models , 1976 .

[255]  L. Brink,et al.  Supersymmetric Strings and Color Confinement , 1976 .

[256]  M. B. Halpern Quantum "solitons" which are SU ( N ) fermions , 1975 .

[257]  B. Zumino,et al.  Consequences of anomalous ward identities , 1971 .

[258]  A. Neveu,et al.  FACTORIZABLE DUAL MODEL OF PIONS. , 1971 .

[259]  R. Moody Lie algebras associated with generalized Cartan matrices , 1967 .

[260]  H. Kawai,et al.  Infinite dimensional Grassmannian structure of two-dimensional quantum gravity , 1992 .

[261]  P. Nieuwenhuizen,et al.  Induced gauge theories and W gravity , 1992 .

[262]  E. Frenkel W -Algebras and Langlands-Drinfeld Correspondence , 1992 .

[263]  A. Wipf,et al.  W-algebras for generalized Toda theories , 1992 .

[264]  E. Frenkel Affine Kac-Moody algebras at the critical level and quantum Drinfeld-Sokolov reduction , 1991 .

[265]  T. Inami Super-W Algebras and Generalized Super-KdV Equations , 1991 .

[266]  D. Friedan The Space of Conformal Field Theories and the Space of Classical String Ground States , 1990 .

[267]  I. Bakas The structure of the $W_\infty$ algebra , 1990 .

[268]  F. Malikov Special vectors in Verma modules over affine algebras , 1989 .

[269]  V. Fateev,et al.  Exactly Solvable Models of Conformal Quantum Theory Associated With Simple Lie Algebra $D(N$). (In Russian) , 1989 .

[270]  R. Goodman,et al.  Higher-order Sugawara operators for affine Lie algebras , 1989 .

[271]  H. Ooguri,et al.  HeiddenSL(n) symmetry in conformal field theories , 1989 .

[272]  A. Belavin KdV-Type Equations and W-Algebras , 1989 .

[273]  F. Bais,et al.  COSET CONSTRUCTION FOR EXTENDED VIRASORO ALGEBRAS , 1988 .

[274]  F. Bais,et al.  Extensions of the Virasoro Algebra Constructed from Kac-Moody Algebras Using Higher Order Casimir Invariants , 1988 .

[275]  F. Bais,et al.  EXTENDED VIRASORO ALGEBRAS , 1988 .

[276]  A. Zamolodchikov Integrals of motion in scaling 3-state Potts model field theory , 1988 .

[277]  J. Thierry-Mieg Generalization of the Sugawara Construction , 1988 .

[278]  V. Fateev,et al.  The Models of Two-Dimensional Conformal Quantum Field Theory with Z(n) Symmetry , 1988 .

[279]  J. Ambjorn Strings, Fields and Critical Phenomena† , 1988 .

[280]  Andrea Cappelli,et al.  Modular Invariant Partition Functions in Two-Dimensions , 1987 .

[281]  P. Bouwknegt On the construction of modular invariant partition functions , 1987 .

[282]  P. Goddard,et al.  Virasoro algebras with central charge c < 1 , 1987 .

[283]  M. Douglas,et al.  G / H CONFORMAL FIELD THEORY , 1987 .

[284]  V. Fateev,et al.  Conformal quantum field theory models in two dimensions having Z3 symmetry , 1987 .

[285]  D. Gepner On the spectrum of 2D conformal field theories , 1987 .

[286]  Zongan Qiu,et al.  Modular invariant partition functions for parafermionic field theories , 1987 .

[287]  D. Gepner New conformal field theories associated with lie algebras and their partition functions , 1987 .

[288]  D. Kastor Modular Invariance in Superconformal Models , 1987 .

[289]  Adrian Kent,et al.  Unitary representations of the Virasoro and super-Virasoro algebras , 1986 .

[290]  S. Shenker,et al.  Conformal invariance, supersymmetry and string theory , 1986 .

[291]  D. Friedan Notes on String Theory and Two Dimensional Conformal Field Theory , 1986 .

[292]  J. Cardy Operator Content of Two-Dimensional Conformally Invariant Theories , 1986 .

[293]  A. Rocha-Caridi Vacuum Vector Representations of the Virasoro Algebra , 1985 .

[294]  S. Shenker,et al.  Conformal Invariance, Unitarity and Two-Dimensional Critical Exponents , 1985 .

[295]  E. Corrigan REPRESENTATIONS OF THE VIRASORO ALGEBRA , 1985 .

[296]  D. B. Fuks,et al.  Verma modules over the virasoro algebra , 1983 .

[297]  G. Segal Unitary representations of some infinite dimensional groups , 1981 .

[298]  V. Kac Contravariant form for infinite-dimensional Lie algebras and superalgebras , 1979 .

[299]  M. B. Halpern,et al.  New dual quark models , 1971 .

[300]  M. B. Halpern The Two faces of a dual pion - quark model , 1971 .

[301]  P. Ramond Dual Theory for Free Fermions , 1971 .

[302]  A. Sudbery,et al.  On Gell-Mann's λ-matrices,d- andf-tensors, octets, and parametrizations ofS U (3) , 1968 .

[303]  H. Sugawara A Field Theory of Currents , 1968 .

[304]  Daniel H. Christensen,et al.  The complete structure of furan , 1962 .