Large-alphabet time-frequency entangled quantum key distribution by means of time-to-frequency conversion.

We introduce a novel time-frequency quantum key distribution (TFQKD) scheme based on photon pairs entangled in these two conjugate degrees of freedom. The scheme uses spectral detection and phase modulation to enable measurements in the temporal basis by means of time-to-frequency conversion. This allows large-alphabet encoding to be implemented with realistic components. A general security analysis for TFQKD with binned measurements reveals a close connection with finite-dimensional QKD protocols and enables analysis of the effects of dark counts on the secure key size.

[1]  J. Boileau,et al.  Conjectured strong complementary information tradeoff. , 2008, Physical review letters.

[2]  I. Walmsley,et al.  SPECTRAL DISTINGUISHABILITY IN ULTRAFAST PARAMETRIC DOWN-CONVERSION , 1998 .

[3]  B. Lanyon,et al.  Experimental demonstration of a compiled version of Shor's algorithm with quantum entanglement. , 2007, Physical review letters.

[4]  I. Walmsley,et al.  Characterization of ultrashort electromagnetic pulses , 2009 .

[5]  H. Weinfurter,et al.  Free-Space distribution of entanglement and single photons over 144 km , 2006, quant-ph/0607182.

[6]  H. Bechmann-Pasquinucci,et al.  Quantum cryptography , 2001, quant-ph/0101098.

[7]  Normand J. Beaudry,et al.  Squashing models for optical measurements in quantum communication. , 2008, Physical review letters.

[8]  B. Kolner,et al.  Upconversion time microscope demonstrating 103 x magnification of femtosecond waveforms. , 1999, Optics letters.

[9]  Anders Karlsson,et al.  Security of quantum key distribution using d-level systems. , 2001, Physical review letters.

[10]  Christine Silberhorn,et al.  Heralded generation of ultrafast single photons in pure quantum States. , 2007, Physical review letters.

[11]  Bing Qi,et al.  Quantum key distribution based on frequency-time coding: security and feasibility , 2011, 1101.5995.

[12]  Aaron J. Miller,et al.  Counting near-infrared single-photons with 95% efficiency. , 2008, Optics express.

[13]  Ian A Walmsley,et al.  Secure quantum key distribution using continuous variables of single photons. , 2007, Physical review letters.

[14]  David M. Bloom,et al.  Time‐to‐frequency converter for measuring picosecond optical pulses , 1993 .

[15]  Liu Song-hao,et al.  Plug and Play Systems for Quantum Cryptography , 2004 .

[16]  Andrea L. Lacaita,et al.  20-ps timing resolution with single-photon avalanche diodes , 1989 .

[17]  V. Scarani,et al.  Towards practical and fast Quantum Cryptography , 2004, quant-ph/0411022.

[18]  Brian J. Smith,et al.  Tailored photon-pair generation in optical fibers. , 2008, Physical review letters.

[19]  Lukasz Rudnicki,et al.  Optimal uncertainty relations for extremely coarse-grained measurements , 2012, 1204.5170.

[20]  Frédéric Grosshans,et al.  Continuous-variable quantum cryptography is secure against non-Gaussian attacks. , 2004, Physical review letters.

[21]  Irfan Khan,et al.  Experimental demonstration of high two-photon time-energy entanglement , 2006 .

[22]  Anders Karlsson,et al.  Quantum key distribution using multilevel encoding: security analysis , 2001 .

[23]  R. Hadfield Single-photon detectors for optical quantum information applications , 2009 .

[24]  Ian A. Walmsley,et al.  A characterization of the single-photon sensitivity of an electron multiplying charge-coupled device , 2009 .

[25]  G. Brida,et al.  Characterization of spectral entanglement of spontaneous parametric-down conversion biphotons in femtosecond pulsed regime , 2009, 0904.3009.

[26]  F. Marsili,et al.  Detecting single infrared photons with 93% system efficiency , 2012, 1209.5774.

[27]  Gilles Brassard,et al.  Quantum Cryptography , 2005, Encyclopedia of Cryptography and Security.

[28]  Sae Woo Nam,et al.  Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors , 2007, 0706.0397.

[29]  Nan Chen,et al.  A New Quantum Key Distribution Scheme based on Frequency and Time Coding , 2010 .

[30]  J. Cirac,et al.  Long-distance quantum communication with atomic ensembles and linear optics , 2001, Nature.

[31]  P R Tapster,et al.  Experimental demonstration of single photon rangefinding using parametric downconversion. , 1990, Applied optics.

[32]  Law,et al.  Continuous frequency entanglement: effective finite hilbert space and entropy control , 2000, Physical review letters.

[33]  Logan G. Wright,et al.  Spectral compression of single photons , 2013, Nature Photonics.

[34]  Philippe Emplit,et al.  Frequency Bin Entangled Photons , 2009, 0910.1325.

[35]  X-Q Zhou,et al.  Experimental realization of Shor's quantum factoring algorithm using qubit recycling , 2011, Nature Photonics.

[36]  John C Howell,et al.  Large-alphabet quantum key distribution using energy-time entangled bipartite States. , 2007, Physical review letters.

[37]  A. I. Lvovsky,et al.  Pulsed squeezed light: Simultaneous squeezing of multiple modes , 2006 .

[38]  Bing Qi Single-photon continuous-variable quantum key distribution based on the energy-time uncertainty relation. , 2006, Optics letters.

[39]  Hiroshi Fukuda,et al.  Long-distance entanglement-based quantum key distribution experiment using practical detectors. , 2010, Optics express.

[40]  B. Kolner Space-time duality and the theory of temporal imaging , 1994 .

[41]  Animesh Datta,et al.  Quantum metrology with imperfect states and detectors , 2010, 1012.0539.

[42]  Stefano Pirandola,et al.  Side-channel-free quantum key distribution. , 2011, Physical review letters.

[43]  G. S. Vernam,et al.  Cipher Printing Telegraph Systems For Secret Wire and Radio Telegraphic Communications , 1926, Transactions of the American Institute of Electrical Engineers.

[44]  C. Silberhorn,et al.  Fibre assisted single photon spectrograph , 2009, CLEO/Europe - EQEC 2009 - European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference.

[45]  M. Curty,et al.  Measurement-device-independent quantum key distribution. , 2011, Physical review letters.

[46]  I. Walmsley,et al.  Spectral information and distinguishability in type-II down-conversion with a broadband pump , 1997 .

[47]  Jeffrey H. Shapiro,et al.  Defeating Active Eavesdropping with Quantum Illumination , 2009, 0904.2490.

[48]  H. Weinfurter,et al.  Entanglement-based quantum communication over 144km , 2007 .

[49]  David N. Payne,et al.  New silica-based low-loss optical fibre , 1974 .

[50]  José Azaña Time-to-frequency conversion using a single time lens , 2003 .

[51]  Michal Lipson,et al.  Optical time lens based on four-wave mixing on a silicon chip. , 2008, Optics letters.

[52]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[53]  Ian A. Walmsley,et al.  Eliminating frequency and space-time correlations in multiphoton states , 2001 .

[54]  I. Walmsley,et al.  Generation of highly entangled photon pairs for continuous variable Bell inequality violation , 2007 .

[55]  James Schneeloch,et al.  Violation of continuous variable EPR steering with discrete measurements , 2012, CLEO: 2013.