Automatic method for tracing regions of interest in rat brain magnetic resonance imaging studies

To automatically extract regions of interest (ROIs) and simultaneously preserve the anatomical characteristics of each individual, we developed a new atlas‐based method utilizing a pair of coregistered brain template and digital atlas.

[1]  P. Jaccard THE DISTRIBUTION OF THE FLORA IN THE ALPINE ZONE.1 , 1912 .

[2]  G. Paxinos,et al.  The Rat Brain in Stereotaxic Coordinates , 1983 .

[3]  Karl J. Friston,et al.  Statistical parametric mapping , 2013 .

[4]  Karl J. Friston,et al.  Spatial registration and normalization of images , 1995 .

[5]  R W Cox,et al.  AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. , 1996, Computers and biomedical research, an international journal.

[6]  George Paxinos,et al.  The Mouse Brain in Stereotaxic Coordinates , 2001 .

[7]  R. Ladebeck,et al.  Echo-Planar Imaging Image Artifacts , 1998 .

[8]  Marleen Verhoye,et al.  Brain studies of mouse models for neurogenetic disorders using in vivo magnetic resonance imaging (MRI) , 2001, European Journal of Human Genetics.

[9]  Paul J. Laurienti,et al.  An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets , 2003, NeuroImage.

[10]  Lan Lin,et al.  Construction of mouse brain MRI templates using SPM 99 , 2003 .

[11]  Joseph A Maldjian,et al.  Precentral gyrus discrepancy in electronic versions of the Talairach atlas , 2004, NeuroImage.

[12]  Steven C. R. Williams,et al.  Using the BOLD MR signal to differentiate the stereoisomers of ketamine in the rat , 2006, NeuroImage.

[13]  Angelo Bifone,et al.  A stereotaxic MRI template set for the rat brain with tissue class distribution maps and co-registered anatomical atlas: Application to pharmacological MRI , 2006, NeuroImage.

[14]  Karl J. Friston,et al.  Statistical parametric mapping , 2013 .

[15]  Andrew S. Lowe,et al.  Small animal, whole brain fMRI: Innocuous and nociceptive forepaw stimulation , 2007, NeuroImage.

[16]  Dominique Hasboun,et al.  Anatomically constrained region deformation for the automated segmentation of the hippocampus and the amygdala: Method and validation on controls and patients with Alzheimer’s disease , 2007, NeuroImage.

[17]  Nuno Sousa,et al.  Effects of altered corticosteroid milieu on rat hippocampal neurochemistry and structure--an in vivo magnetic resonance spectroscopy and imaging study. , 2008, Journal of psychiatric research.

[18]  D. R. Chialvo,et al.  Flattened cortical maps of cerebral function in the rat: A region-of-interest approach to data sampling, analysis and display , 2008, Neuroscience Letters.

[19]  Mathias Hoehn,et al.  MRI Detection of Secondary Damage After Stroke: Chronic Iron Accumulation in the Thalamus of the Rat Brain , 2008, Stroke.

[20]  David A. Seminowicz,et al.  MRI structural brain changes associated with sensory and emotional function in a rat model of long-term neuropathic pain , 2009, NeuroImage.

[21]  Murali Murugavel,et al.  Automatic cropping of MRI rat brain volumes using pulse coupled neural networks , 2009, NeuroImage.

[22]  P. Bandettini,et al.  What's New in Neuroimaging Methods? , 2009, Annals of the New York Academy of Sciences.

[23]  Alexander Hammers,et al.  Evaluation of atlas-based segmentation of hippocampi in healthy humans. , 2009, Magnetic resonance imaging.

[24]  M. Taylor,et al.  Evidence That Increased 5-HT Release Evokes Region-Specific Effects on Blood-Oxygenation Level-Dependent Functional Magnetic Resonance Imaging Responses in the Rat Brain , 2009, Neuroscience.