What determines the ultimate precision of a quantum computer

A quantum error correction (QEC) code uses $N_{\rm c}$ quantum bits to construct one "logical" quantum bits of better quality than the original "physical" ones. QEC theory predicts that the failure probability $p_L$ of logical qubits decreases exponentially with $N_{\rm c}$ provided the failure probability $p$ of the physical qubit is below a certain threshold $p<p_{\rm th}$. In particular QEC theorems imply that the logical qubits can be made arbitrarily precise by simply increasing $N_{\rm c}$. In this letter, we search for physical mechanisms that lie outside of the hypothesis of QEC theorems and set a limit $\eta_{\rm L}$ to the precision of the logical qubits (irrespectively of $N_{\rm c}$). $\eta_{\rm L}$ directly controls the maximum number of operations $\propto 1/\eta_{\rm L}^2$ that can be performed before the logical quantum state gets randomized, hence the depth of the quantum circuits that can be considered. We identify a type of error - silent stabilizer failure - as a mechanism responsible for finite $\eta_{\rm L}$ and discuss its possible causes. Using the example of the topological surface code, we show that a single local event can provoke the failure of the logical qubit, irrespectively of $N_c$.

[1]  P. Alam ‘Z’ , 2021, Composites Engineering: An A–Z Guide.

[2]  S. Girvin,et al.  Charge-insensitive qubit design derived from the Cooper pair box , 2007, cond-mat/0703002.

[3]  David P. DiVincenzo,et al.  Fault-tolerant quantum computation for singlet-triplet qubits with leakage errors , 2014, 1412.7010.

[4]  P. Coveney,et al.  Scalable Quantum Simulation of Molecular Energies , 2015, 1512.06860.

[5]  W. Marsden I and J , 2012 .

[6]  P. Alam ‘E’ , 2021, Composites Engineering: An A–Z Guide.

[7]  Austin G. Fowler,et al.  Understanding the effects of leakage in superconducting quantum-error-detection circuits , 2013, 1306.0925.

[8]  DiVincenzo,et al.  Fault-Tolerant Error Correction with Efficient Quantum Codes. , 1996, Physical review letters.

[9]  Isaac L. Chuang,et al.  Quantum Computation and Quantum Information (10th Anniversary edition) , 2011 .

[10]  Austin G. Fowler,et al.  Coping with qubit leakage in topological codes , 2013, 1308.6642.

[11]  J. Herskowitz,et al.  Proceedings of the National Academy of Sciences, USA , 1996, Current Biology.

[12]  Daniel Loss,et al.  Breakdown of surface-code error correction due to coupling to a bosonic bath , 2014, 1402.3108.

[13]  Laflamme,et al.  Perfect Quantum Error Correcting Code. , 1996, Physical review letters.

[14]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[15]  Zijun Chen,et al.  Measuring and Suppressing Quantum State Leakage in a Superconducting Qubit. , 2015, Physical review letters.

[16]  M. Plenio,et al.  Conditional generation of error syndromes in fault-tolerant error correction , 1997 .

[17]  P. Alam ‘L’ , 2021, Composites Engineering: An A–Z Guide.

[18]  Steane,et al.  Error Correcting Codes in Quantum Theory. , 1996, Physical review letters.

[19]  D. DiVincenzo,et al.  Quantum computation with quantum dots , 1997, cond-mat/9701055.

[20]  Joseph Emerson,et al.  Scalable protocol for identification of correctable codes , 2007, 0710.1900.

[21]  P. Alam ‘S’ , 2021, Composites Engineering: An A–Z Guide.

[22]  Austin G. Fowler,et al.  Quantifying the effects of local many-qubit errors and nonlocal two-qubit errors on the surface code , 2014 .

[23]  Alán Aspuru-Guzik,et al.  A variational eigenvalue solver on a photonic quantum processor , 2013, Nature Communications.

[24]  E. Knill,et al.  Resilient Quantum Computation , 1998 .

[25]  Barbara M. Terhal,et al.  Fault-tolerant quantum computation for local leakage faults , 2005, Quantum Inf. Comput..

[26]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[27]  M. Mariantoni,et al.  Surface codes: Towards practical large-scale quantum computation , 2012, 1208.0928.

[28]  B. Terhal Quantum error correction for quantum memories , 2013, 1302.3428.

[29]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[30]  A. Doherty,et al.  Thresholds for topological codes in the presence of loss. , 2009, Physical review letters.

[31]  Andrew W. Cross,et al.  Quantum optimization using variational algorithms on near-term quantum devices , 2017, Quantum Science and Technology.

[32]  M. Troyer,et al.  Elucidating reaction mechanisms on quantum computers , 2016, Proceedings of the National Academy of Sciences.

[33]  Prospects for quantum computing: Extremely doubtful , 2014, 1401.3629.

[34]  H Neven,et al.  A blueprint for demonstrating quantum supremacy with superconducting qubits , 2017, Science.

[35]  J. Gambetta,et al.  Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets , 2017, Nature.

[36]  Nicolas Gisin,et al.  Quantum communication , 2017, 2017 Optical Fiber Communications Conference and Exhibition (OFC).

[37]  A. Fowler,et al.  Proof of finite surface code threshold for matching. , 2012, Physical review letters.