CAMS: Cameras for Allsky Meteor Surveillance to establish minor meteor showers

Abstract First results are presented from a newly developed meteoroid orbit survey, called CAMS – Cameras for Allsky Meteor Surveillance, which combines meteor detection algorithms for low-light video observations with traditional video surveillance tools. Sixty video cameras at three stations monitor the sky above 31° elevation. Goal of CAMS is to verify meteor showers in search of their parent comets among newly discovered near-Earth objects. This paper outlines the concept of operations, the hardware, and software methods used during operation and in the data reduction pipeline, and accompanies the data release of the first batch of meteoroid orbits. During the month of November 2010, 2169 precisely reduced meteoroid trajectories from 17 nights have an error in the apparent radiant of the trajectory CAMS readily detected all established showers (6) active during the clear nights in November. Of the showers that needed confirmation, we confirm the theta Aurigids (THA, IAU#390), the chi Taurids (CTA, IAU#388), and the omicron Eridanids (OER, IAU#338). We conclude that the iota November Aurigids (IAR, IAU#248) are in fact the combined activity of the theta Aurigids and chi Taurids, and this shower should be dismissed from the list. Finally, there is also a clustering consistent with the zeta Cancrids (ZCN, IAU#243), but we cannot exclude that this is lower perihelion dust belonging to the Orionid shower. Data are submitted to the IAU Meteor Data Center on a semi-regular basis, and can be accessed also at http://cams.seti.org .

[1]  Karel Fliegel,et al.  Automatic Video System for Continues Monitoring of the Meteor Activity , 2011 .

[2]  A. Posen,et al.  Orbital Elements of Photographic Meteors , 1961 .

[3]  Laurent Jorda,et al.  A new method to predict meteor showers - II. Application to the Leonids , 2005 .

[4]  P. Jenniskens Meteor Showers and their Parent Comets , 2006 .

[5]  M. Beech The classification of meteor light curves: an application of hat theory , 2007 .

[6]  D. Galligan,et al.  The radiant distribution of AMOR radar meteors , 2005 .

[7]  P. Koten,et al.  Meteoroid streams identification amongst 231 Southern hemisphere video meteors , 2010 .

[8]  P. Jenniskens Meteoroid streams that trace to candidate dormant comets , 2008 .

[9]  Peter S. Gural,et al.  A new meteor detection processing approach for observations collected by the Croatian Meteor Network (CMN) , 2009 .

[10]  M. Gounelle The Asteroid–Comet Continuum: In Search of Lost Primitivity , 2011 .

[11]  Detlef Koschny,et al.  Radiants of the Leonids 1999 and 2001 Obtained by Lltv Systems Using Automatic Software Tools , 2006 .

[12]  D. Galligan Radar meteoroid orbit stream searches using cluster analysis , 2003 .

[13]  R. Hawkes,et al.  Television Observations of Faint Meteors – I: MASS DISTRIBUTION AND DIURNAL RATE VARIATION , 1975 .

[14]  L. Jacchia,et al.  An analysis of the atmospheric trajectories of 413 precisely reduced photographic meteors , 1967 .

[15]  P. Gural,et al.  Discovery of the February Eta Draconids (FED, IAU#427): the dust trail of a potentially hazardous long-period comet , 2011 .

[16]  L. Jorda,et al.  A new method to predict meteor showers. I. Description of the model , 2005 .

[17]  William Wilson Morgan,et al.  Fundamental stellar photometry for standards of spectral type on the revised system of the Yerkes spectral atlas , 1953 .

[18]  K. Clifton Television studies of faint meteors , 1973 .

[19]  S. Breiter,et al.  Orbital similarity functions – application to asteroid pairs , 2010 .

[20]  Peter S. Gural,et al.  A review of video meteor detection and analysis software , 2005 .

[21]  Peter Jenniskens,et al.  Very precise orbits of 1998 Leonid meteors , 1999 .

[22]  A. Taylor,et al.  Thte Advanced Meteor Orbit Radar Facility - Amor , 1994 .

[23]  Meteor showers of comet C/1917 F1 Mellish , 2010, 1010.5733.

[24]  P. Pecina On the determination of meteoroid orbital elements , 1994 .

[25]  Peter S. Gural,et al.  Determination of Meteoroid Orbits and Spatial Fluxes by Using High-Resolution All-Sky CCD Cameras , 2008 .

[26]  James Jones,et al.  A meteoroid stream survey using the Canadian Meteor Orbit Radar: I. Methodology and radiant catalogue , 2008 .

[27]  D. K. Wong,et al.  The Canadian Meteor Orbit Radar Meteor Stream Catalogue , 2008 .

[28]  J. Svoreň,et al.  A computer program for calculation of a theoretical meteor-stream radiant , 1998 .

[29]  SonotaCo A meteor shower catalog based on video observations in 2007-2008 , 2009 .

[30]  Harold F. Levison,et al.  COMETARY ORIGIN OF THE ZODIACAL CLOUD AND CARBONACEOUS MICROMETEORITES. IMPLICATIONS FOR HOT DEBRIS DISKS , 2009, 0909.4322.

[31]  John Guy Porter,et al.  Comets and Meteor Streams , 1953 .

[32]  F. Whipple,et al.  Precision orbits of 413 photographic meteors , 1961 .

[33]  R. Rudawska,et al.  Meteoroid Stream Searching: The Use of the Vectorial Elements , 2008 .

[34]  Z. Sekanina Statistical model of meteor streams. IV. A study of radio streams from the synoptic year , 1976 .

[35]  J. Borovička The comparison of two methods of determining meteor trajectories from photographs , 1990 .

[36]  R. Rudawska,et al.  Calculation of the mean orbit of a meteoroid stream , 2006 .

[37]  Peter S. Gural Applying State-of-the-Art Video and Computer Technology to Meteor Astronomy , 1995 .

[38]  S. P. Worden,et al.  Image‐intensified video results from the 1998 Leonid shower: I. Atmospheric trajectories and physical structure , 2000 .

[39]  J. Vaubaillon,et al.  MINOR PLANET 2002 EX12 (=169P/NEAT) AND THE ALPHA CAPRICORNID SHOWER , 2010 .

[40]  P. Bretagnon,et al.  Planetary Theories in rectangular and spherical variables: VSOP87 solution. , 1988 .

[41]  P. Brown,et al.  The recovery of asteroid 2008 TC3 , 2010 .

[42]  W. Elford,et al.  Southern Hemisphere meteor stream determinations , 1975 .

[43]  Peter S. Gural,et al.  Algorithms and Software for Meteor Detection , 2008 .

[44]  Z. Sekanina Statistical model of meteor streams. III - Stream search among 19303 radio meteors. , 1973 .

[45]  Donald William Robert McKinley,et al.  Meteor science and engineering. , 1961 .

[46]  S. N. Milam,et al.  The impact and recovery of asteroid 2008 TC3 , 2009, Nature.

[47]  P. Brown,et al.  Physical characteristics of very small meteoroids , 2007 .

[48]  P. Brown,et al.  Multi-station electro-optical observations of the 1999 Leonid meteor storm , 2002 .

[49]  C. Nilsson A Southern Hemisphere Radio Survey of Meteor Streams , 1964 .

[50]  M. Bessell Standard Photometric Systems , 2005 .

[51]  D. Vallado Fundamentals of Astrodynamics and Applications , 1997 .

[52]  F. Whipple Solid particles in the solar system , 1959 .

[53]  P. Jenniskens Mostly Dormant Comets and their Disintegration into Meteoroid Streams: A Review , 2008 .

[54]  L. Colina,et al.  Absolute Flux Calibrated Spectrum of , 1996 .

[55]  I. Williams The origin and evolution of meteor showers and meteoroid streams , 2011 .

[56]  P. Bretagnon Theorie du mouvement de l'ensemble des planetes (VSOP82). , 1982 .

[57]  Zdenek Ceplecha,et al.  Geometric, dynamic, orbital and photometric data on meteoroids from photographic fireball networks , 1987 .

[58]  Sirko Molau MOVIE: Meteor Observation with VIdeo Equipment , 1994 .

[59]  G. Hawkins,et al.  Statistics of meteor streams , 1963 .

[60]  P. Kozak “Falling Star”: Software for Processing of Double-Station TV Meteor Observations , 2008 .

[61]  D. K. Wong,et al.  A meteoroid stream survey using the Canadian Meteor Orbit Radar II: Identification of minor showers using a 3D wavelet transform , 2010 .

[62]  Peter S. Gural An Operational Autonomous Meteor Detector: Development Issues and Early Results , 1997 .

[63]  Jean H. Meeus,et al.  Astronomical Algorithms , 1991 .

[64]  A. Cousins,et al.  VRI standards in the E regions , 1976 .

[65]  Michael A. Wilson,et al.  Precisely reduced meteoroid trajectories and orbits from the 1995 Leonid meteor outburst , 1997 .