Simplified Reference Tissue Model for PET Receptor Studies

The reference tissue model allows for quantification of receptor kinetics without measuring the arterial input function, thus avoiding arterial cannulation and time-consuming metabolite measurements. The model contains four parameters, of which the binding potential (BP) is the parameter of interest. Although BP is robust, convergence rates are slow and the other parameters can have large standard errors. To overcome this problem, a simplified reference tissue containing only three parameters was developed. This new three-parameter model was compared with the previous four-parameter model using a variety of PET studies: [11C]SCH 23390 (D1 receptor) and [11C]raclopride (D2 receptor) in humans, and [11C]SCH 23390, [11C]raclopride and [11C]RTI-121 (dopamine transporter) in rats. The BP values obtained from both models were essentially the same for all cases. In addition, the three-parameter model was insensitive to starting values, produced stable results for the other parameters (small standard errors), and converged rapidly. In conclusion, for the ligands tested the three-parameter model is a better choice, combining increased convergence rate with increased stability.

[1]  H. Akaike A new look at the statistical model identification , 1974 .

[2]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[3]  V. Cunningham Non-linear regression techniques in data analysis. , 1985, Medical informatics = Medecine et informatique.

[4]  M. Gilardi,et al.  Physical performance of the latest generation of commercial positron scanner , 1988 .

[5]  L. Farde,et al.  Kinetic Analysis of Central [11C]Raclopride Binding to D2-Dopamine Receptors Studied by PET—A Comparison to the Equilibrium Analysis , 1989, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[6]  T J Spinks,et al.  Physical performance of a positron tomograph for brain imaging with retractable septa. , 1992, Physics in medicine and biology.

[7]  R. Myers,et al.  Quantitation of Carbon‐11‐labeled raclopride in rat striatum using positron emission tomography , 1992, Synapse.

[8]  R S Frackowiak,et al.  Asymmetrical pre-synaptic and post-synpatic changes in the striatal dopamine projection in dopa naïve parkinsonism. Diagnostic implications of the D2 receptor status. , 1993, Brain : a journal of neurology.

[9]  A A Lammertsma,et al.  Evaluation of [O-methyl-3H]WAY-100635 as an in vivo radioligand for 5-HT1A receptors in rat brain. , 1994, European journal of pharmacology.

[10]  G. Sawle,et al.  PET studies of the presynaptic and postsynaptic dopaminergic system in Tourette's syndrome. , 1994, Journal of neurology, neurosurgery, and psychiatry.

[11]  T J Spinks,et al.  The design and physical characteristics of a small animal positron emission tomograph. , 1995, Physics in medicine and biology.

[12]  D J Brooks,et al.  Effect of L‐dopa and 6‐hydroxydopamine lesioning on [11C]raclopride binding in rat striatum, quantified using PET , 1995, Synapse.

[13]  Adriaan A. Lammertsma,et al.  The potential of high-resolution positron emission tomography to monitor striatal dopaminergic function in rat models of disease , 1996, Journal of Neuroscience Methods.

[14]  A. Lammertsma,et al.  Development of central 5-HT2A receptor radioligands for PET: comparison of [3H]RP 62203 and [3H]SR 46349B kinetics in rat brain. , 1996, Nuclear medicine and biology.

[15]  D J Brooks,et al.  Comparison of Methods for Analysis of Clinical [11C]Raclopride Studies , 1996, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[16]  Adriaan A. Lammertsma,et al.  CHAPTER 3 – Quantification of Dopamine Receptors and Transporter in Rat Striatum Using a Small Animal PET Scanner , 1996 .

[17]  R. Myers Quantification of brain function using PET , 1996 .