A novel material of HfScMo2VO12 with negative thermal expansion and intense white-light emission

A novel material of HfScMo2VO12 with negative thermal expansion (NTE) and intense white-light emission is presented. Structural analysis shows that it adopts an orthorhombic structure with the space group Pbcn and exhibits excellent NTE over a wide temperature range. The linear coefficient of thermal expansion was measured to be −2.78 × 10−6 K−1 (−150 to 675 K) and −2.99 × 10−6 K−1 (300–780 K) by dilatometers and αl = −2.11 × 10−6 K−1 from temperature-dependent X-ray diffraction. Besides the NTE property, HfScMo2VO12 possesses intense wide-band photoluminescence (PL) covering the visible region. The commission International de I'Eclairage (CIE) chromaticity coordinate is (0.27, 0.39) at room temperature and (0.33, 0.36) at 10 K, respectively. The integration of low NTE with intense white-light emission suggests potential applications of this material in white light emission diodes and other devices.

[1]  E. Liang,et al.  Negative thermal expansion and electrical properties of α-Cu2V2O7 , 2016 .

[2]  J. Deng,et al.  Negative thermal expansion in functional materials: controllable thermal expansion by chemical modifications. , 2015, Chemical Society reviews.

[3]  X. Liu,et al.  In situ investigation of the surface morphology evolution of the bulk ceramic Y2Mo3O12 during crystal water release. , 2015, Physical chemistry chemical physics : PCCP.

[4]  Shaopeng Li,et al.  Abnormal thermal expansion properties of cubic NaZn13-type La(Fe,Al)13 compounds. , 2015, Physical chemistry chemical physics : PCCP.

[5]  D. Beke,et al.  Jerky magnetic noises generated by cyclic deformation of martensite in Ni2MnGa single crystalline shape memory alloys , 2015 .

[6]  Wenbo Song,et al.  High substitution of Fe3+ for Zr4+ in ZrV1.6P0.4O7 with small amount of FeV0.8P0.2O4 for low thermal expansion , 2014 .

[7]  Wenbo Song,et al.  Phase transition, crystal water and low thermal expansion behavior of Al2−2x(ZrMg)xW3O12·n(H2O) , 2014 .

[8]  Lihua Chu,et al.  Study of structure of Mn3Cu0.5Ge0.5N/Cu composite with nearly zero thermal expansion behavior around room temperature , 2014 .

[9]  Xiansheng Liu,et al.  Interaction of crystal water with the building block in Y2Mo3O12 and the effect of Ce3+ doping. , 2014, Physical chemistry chemical physics : PCCP.

[10]  Fei Wang,et al.  First-principles study of tetragonal PbTiO3: Phonon and thermal expansion , 2014 .

[11]  A. Borrell,et al.  Fabrication of near-zero thermal expansion of fully dense β-eucryptite ceramics by microwave sintering , 2014 .

[12]  Li Zhi-Yuan,et al.  A Negative Thermal Expansion Material of ZrMgMo3O12 , 2013 .

[13]  Lihua Chu,et al.  Magnetic structure and lattice contraction in Mn3NiN , 2013 .

[14]  J. Deng,et al.  Effectively control negative thermal expansion of single-phase ferroelectrics of PbTiO3-(Bi,La)FeO3 over a giant range , 2013, Scientific Reports.

[15]  Qiang Sun,et al.  Negative thermal expansion correlated with polyhedral movements and distortions in orthorhombic Y2Mo3O12 , 2013 .

[16]  M. Gupta,et al.  Negative thermal expansion in cubic ZrW 2 O 8 : Role of phonons in the entire Brillouin zone from ab initio calculations , 2013, 1304.2921.

[17]  Yuping Sun,et al.  Magnetic transition broadening and local lattice distortion in the negative thermal expansion antiperovskite Cu1−xSnxNMn3 , 2013 .

[18]  Meifen Wu,et al.  Phase transition and negative thermal expansion properties of Sc2−xCrxMo3O12 , 2012 .

[19]  C. Perottoni,et al.  First-principles mode Gruneisen parameters and negative thermal expansion in α-ZrW2O8. , 2012, Physical review letters.

[20]  A. Arora,et al.  Anharmonic phonons of NaZr 2 (PO 4 ) 3 studied by Raman spectroscopy, first-principles calculations, and x-ray diffraction , 2012 .

[21]  B. Fultz,et al.  Structural relationship between negative thermal expansion and quartic anharmonicity of cubic ScF3. , 2011, Physical review letters.

[22]  E. Liang,et al.  Structures, Phase Transition, and Crystal Water of Fe2–xYxMo3O12 , 2011 .

[23]  Jacob L. Jones,et al.  The role of spontaneous polarization in the negative thermal expansion of tetragonal PbTiO3-based compounds. , 2011, Journal of the American Chemical Society.

[24]  J. Attfield,et al.  Colossal negative thermal expansion in BiNiO3 induced by intermetallic charge transfer , 2011, Nature communications.

[25]  Kazuya Saito,et al.  Negative thermal expansion emerging upon structural phase transition in ZrV2O7 and HfV2O7. , 2011, Dalton transactions.

[26]  M. Azuma,et al.  Temperature-induced A–B intersite charge transfer in an A-site-ordered LaCu3Fe4O12 perovskite , 2009, Nature.

[27]  Yu Jia,et al.  Electronic structure, bonding and phonon modes in the negative thermal expansion materials of Cd(CN)2 and Zn(CN)2 , 2008, Journal of physics. Condensed matter : an Institute of Physics journal.

[28]  M. Calleja,et al.  Colossal Positive and Negative Thermal Expansion in the Framework Material Ag3[Co(CN)6] , 2008, Science.

[29]  M. Green,et al.  Polymorphism in the negative thermal expansion material magnesium hafnium tungstate , 2008 .

[30]  T. Varga,et al.  Thermochemistry of A_2M_3O_12 negative thermal expansion materials , 2007 .

[31]  M. White,et al.  Low thermal conductivity of the negative thermal expansion material, HfMo2O8 , 2007 .

[32]  A. Umarji,et al.  Negative thermal expansion in rare earth molybdates , 2006 .

[33]  S.J. Chang,et al.  White-light emission from near UV InGaN-GaN LED chip precoated with blue/green/red phosphors , 2003, IEEE Photonics Technology Letters.

[34]  M. Pashley,et al.  Red, green, and blue LEDs for white light illumination , 2002 .

[35]  A. K. Tyagi,et al.  Phase transition and negative thermal expansion in A2(MoO4)3 system (A=Fe3+, Cr3+ and Al3+) , 2002 .

[36]  John S. O. Evans,et al.  Negative thermal expansion in Sc2(WO4)3 , 1998 .

[37]  S. Nakamura Blue-Green Light-Emitting Diodes and Violet Laser Diodes , 1997 .

[38]  John S. O. Evans,et al.  Negative Thermal Expansion from 0.3 to 1050 Kelvin in ZrW2O8 , 1996, Science.

[39]  D. G. Thomas,et al.  Pair Spectra in GaP , 1963 .