Robust Parameter Design With Feed-Forward Control

When there exists strong noise factors in the process, robust parameter design alone may not be effective, and a control strategy can be used to compensate for the effect of noise. In this article a parameter design methodology in the presence of a feed-forward control is developed. In particular, performance measures for evaluating control factor settings in measurement systems, simple response systems, and multiple target systems are developed. Strategies for the design and analysis of experiments are discussed. The approach is illustrated using an example on gold plating.

[1]  Eric R. Ziegel,et al.  Generalized Linear Models , 2002, Technometrics.

[2]  Tormod Næs,et al.  Sorting of raw materials with focus on multiple end‐product properties , 2002 .

[3]  Arden Miller,et al.  Parameter Design for Signal-Response Systems: A Different Look at Taguchi's Dynamic Parameter Design , 1996 .

[4]  V. R. Joseph,et al.  Performance Measures in Dynamic Parameter Design , 2002 .

[5]  Vijayan N. Nair,et al.  EXPLOITING THE INHERENT STRUCTURE IN ROBUST PARAMETER DESIGN EXPERIMENTS , 1998 .

[6]  Henry W. Altland Experiments: Planning, Analysis, and Parameter Design Optimization , 2001, Technometrics.

[7]  V. Roshan Joseph,et al.  Robust Parameter Design of Multiple-Target Systems , 2002, Technometrics.

[8]  James C. Spall,et al.  Introduction to stochastic search and optimization - estimation, simulation, and control , 2003, Wiley-Interscience series in discrete mathematics and optimization.

[9]  Yu Zhu,et al.  OPTIMAL SELECTION OF SINGLE ARRAYS FOR PARAMETER DESIGN EXPERIMENTS , 2003 .

[10]  Tormod Næs,et al.  Using raw material measurements in robust process optimization , 2001 .

[11]  田口 玄一,et al.  Taguchi methods, case studies from the U.S. and Europe , 1989 .

[12]  David M. Steinberg,et al.  NOISE FACTORS, DISPERSION EFFECTS, AND ROBUST DESIGN , 1993 .

[13]  K. Tsui Modeling and analysis of dynamic robust design experiments , 1999 .

[14]  James C. Spall,et al.  Introduction to stochastic search and optimization - estimation, simulation, and control , 2003, Wiley-Interscience series in discrete mathematics and optimization.

[15]  Raghu N. Kacker,et al.  Performance measures independent of adjustment , 1987 .

[16]  Megan Pledger Observable Uncontrollable Factors in Parameter Design , 1996 .

[17]  Ivan N. Vuchkov,et al.  Quality Improvement with Design of Experiments: A Response Surface Approach , 2001 .

[18]  Tormod Næs,et al.  Optimal Sorting of Raw Materials, Based on the Predicted End-Product Quality , 2002 .

[19]  A. C. Shoemaker,et al.  Performance Measures Independent of Adjustment: An Explanation and Extension of Taguchi's Signal-to-Noise Ratios , 1987 .

[20]  P. McCullagh,et al.  Generalized Linear Models , 1992 .

[21]  Henry W. Altland,et al.  Engineering Methods for Robust Product Design , 1996 .

[22]  Yuin Wu,et al.  Taguchi Methods for Robust Design , 2000 .