Practical graph isomorphism, II

We report the current state of the graph isomorphism problem from the practical point of view. After describing the general principles of the refinement-individualization paradigm and pro ving its validity, we explain how it is implemented in several of the key implementations. In particular, we bring the description of the best known program nauty up to date and describe an innovative approach called Traces that outperforms the competitors for many difficult graph classes. Detailed comparisons against saucy, Bliss and conauto are presented.

[1]  D MckayBrendan,et al.  Practical graph isomorphism, II , 2014 .

[2]  D. Corneil,et al.  An Efficient Algorithm for Graph Isomorphism , 1970, JACM.

[3]  A. V. Uskov,et al.  An algorithm for the reduction of finite non-oriented graphs to canonical form , 1974 .

[4]  Petteri Kaski,et al.  Engineering an Efficient Canonical Labeling Tool for Large and Sparse Graphs , 2007, ALENEX.

[5]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .

[6]  Igor L. Markov,et al.  Exploiting structure in symmetry detection for CNF , 2004, Proceedings. 41st Design Automation Conference, 2004..

[7]  William Kocay,et al.  Errors in graph embedding algorithms , 2011, J. Comput. Syst. Sci..

[8]  Á. Seress Permutation Group Algorithms , 2003 .

[9]  Antonio Fernández,et al.  Conauto-2.0: Fast Isomorphism Testing and Automorphism Group Computation , 2011, ArXiv.

[10]  Hans L. Boblaender Polynomial algorithms for graph isomorphism and chromatic index on partial k -trees , 1990 .

[11]  Adolfo Piperno,et al.  Search Space Contraction in Canonical Labeling of Graphs (Preliminary Version) , 2008, ArXiv.

[12]  Eugene M. Luks Isomorphism of Graphs of Bounded Valence Can Be Tested in Polynomial Time , 1980, FOCS.

[13]  Charles J. Colbourn,et al.  Linear Time Automorphism Algorithms for Trees, Interval Graphs, and Planar Graphs , 1981, SIAM J. Comput..

[14]  Ken-ichi Kawarabayashi,et al.  Graph and map isomorphism and all polyhedral embeddings in linear time , 2008, STOC.

[15]  Martin Grohe Structural and logical approaches to the graph isomorphism problem , 2012, SODA.

[16]  Brendan D. McKay,et al.  Computing automorphisms and canonical labellings of graphs , 1978 .

[17]  I. S. Filotti,et al.  A polynomial-time algorithm for determining the isomorphism of graphs of fixed genus , 1980, STOC '80.

[18]  Martin Grohe,et al.  Fixed-Point Definability and Polynomial Time on Graphs with Excluded Minors , 2010, 2010 25th Annual IEEE Symposium on Logic in Computer Science.

[19]  Stefan Kohl Algorithms for a class of infinite permutation groups , 2008, J. Symb. Comput..

[20]  Gregory Butler,et al.  A General Backtrack Algorithm for the Isomorphism Problem of Combinatorial Objects , 1985, J. Symb. Comput..

[21]  Petteri Kaski,et al.  Conflict Propagation and Component Recursion for Canonical Labeling , 2011, TAPAS.

[22]  Derek G. Corneil,et al.  The graph isomorphism disease , 1977, J. Graph Theory.

[23]  Hans L. Bodlaender,et al.  Polynomial Algorithms for Graph Isomorphism and Chromatic Index on Partial k-Trees , 1988, J. Algorithms.

[24]  Gary L. Miller,et al.  Isomorphism testing for graphs of bounded genus , 1980, STOC '80.

[25]  László Babai,et al.  Computational complexity and the classification of finite simple groups , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[26]  William L. Kocay,et al.  On Writing Isomorphism Programs , 1996 .

[27]  Stoicho D. Stoichev Polynomial time and space exact and heuristic algorithms for determining the generators, orbits and order of the graph automorphism group , 2010, ArXiv.

[28]  Antonio Fernández,et al.  Fast Algorithm for Graph Isomorphism Testing , 2009, SEA.

[29]  Igor L. Markov,et al.  Faster symmetry discovery using sparsity of symmetries , 2008, 2008 45th ACM/IEEE Design Automation Conference.

[30]  J. S. Leon,et al.  Permutation Group Algorithms Based on Partitions, I: Theory and Algorithms , 1991, J. Symb. Comput..

[31]  Mario Vento,et al.  A Performance Comparison of Five Algorithms for Graph Isomorphism , 2001 .

[32]  Silvio Micali,et al.  Proofs that yield nothing but their validity or all languages in NP have zero-knowledge proof systems , 1991, JACM.