Numerical Solution of the L1-Optimal Transport Problem on Surfaces

In this article we study the numerical solution of the L-Optimal Transport Problem on 2D surfaces embedded in R, via the DMK formulation introduced in [1]. We extend from the Euclidean into the Riemannian setting the DMK model and conjecture the equivalence with the solution MongeKantorovich equations, a PDE-based formulation of the L-Optimal Transport Problem. We generalize the numerical method proposed in [1, 2] to 2D surfaces embedded in R using the Surface Finite Element Model approach to approximate the Laplace-Beltrami equation arising from the model. We test the accuracy and efficiency of the proposed numerical scheme, comparing our approximate solution with respect to an exact solution on a 2D sphere. The results show that the numerical scheme is efficient, robust, and more accurate with respect to other numerical schemes presented in the literature for the solution of L-Optimal Transport Problem on 2D surfaces.

[1]  Jean-David Benamou,et al.  Augmented Lagrangian Methods for Transport Optimization, Mean Field Games and Degenerate Elliptic Equations , 2015, J. Optim. Theory Appl..

[2]  Tryphon T. Georgiou,et al.  Optimal Transport Over a Linear Dynamical System , 2015, IEEE Transactions on Automatic Control.

[3]  Wotao Yin,et al.  A Parallel Method for Earth Mover’s Distance , 2018, J. Sci. Comput..

[4]  Leonidas J. Guibas,et al.  Earth mover's distances on discrete surfaces , 2014, ACM Trans. Graph..

[5]  L. Kantorovich On the Translocation of Masses , 2006 .

[6]  Ilaria Fragalà,et al.  On some notions of tangent space to a measure , 1999 .

[7]  Aaron C. Courville,et al.  Improved Training of Wasserstein GANs , 2017, NIPS.

[8]  Michele Benzi,et al.  Fast Iterative Solution of the Optimal Transport Problem on Graphs , 2020, SIAM J. Sci. Comput..

[9]  Pierre Seppecher,et al.  Energies with respect to a measure and applications to low dimensional structures , 1997 .

[10]  Justin Solomon,et al.  Dynamical optimal transport on discrete surfaces , 2018, ACM Trans. Graph..

[11]  Gabriel Peyré,et al.  Computational Optimal Transport , 2018, Found. Trends Mach. Learn..

[12]  Charles M. Elliott,et al.  Finite element methods for surface PDEs* , 2013, Acta Numerica.

[13]  Wei Zeng,et al.  Shape Classification Using Wasserstein Distance for Brain Morphometry Analysis , 2015, IPMI.

[14]  Arthur Cayley,et al.  The Collected Mathematical Papers: On Monge's “Mémoire sur la théorie des déblais et des remblais” , 2009 .

[15]  Gian Luca Delzanno,et al.  An optimal robust equidistribution method for two-dimensional grid adaptation based on Monge-Kantorovich optimization , 2008, J. Comput. Phys..

[16]  J. Virieux,et al.  An optimal transport approach for seismic tomography: application to 3D full waveform inversion , 2016 .

[17]  Luca Bergamaschi,et al.  Spectral preconditioners for the efficient numerical solution of a continuous branched transport model , 2019, J. Comput. Appl. Math..

[18]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[19]  Per-Olof Persson,et al.  A Simple Mesh Generator in MATLAB , 2004, SIAM Rev..

[20]  L. Ambrosio,et al.  Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .

[21]  Equivalence between some definitions for the optimal mass transport problem and for the transport density on manifolds , 2005 .

[22]  R. McCann,et al.  Uniqueness and transport density in Monge's mass transportation problem , 2002 .

[23]  Gabriel Peyré,et al.  Stochastic Optimization for Large-scale Optimal Transport , 2016, NIPS.

[24]  Integral Estimates for Transport Densities , 2004 .

[25]  L. Ambrosio Lecture Notes on Optimal Transport Problems , 2003 .

[26]  L. Evans,et al.  Differential equations methods for the Monge-Kantorovich mass transfer problem , 1999 .

[27]  R. McCann,et al.  Monge's transport problem on a Riemannian manifold , 2001 .

[28]  Filippo Santambrogio Absolute continuity and summability of transport densities: simpler proofs and new estimates , 2009 .

[29]  Filippo Santambrogio,et al.  Optimal Transport for Applied Mathematicians , 2015 .

[30]  Sara Daneri,et al.  Numerical Solution of Monge–Kantorovich Equations via a Dynamic Formulation , 2017, Journal of Scientific Computing.

[31]  Yann Brenier,et al.  The Monge–Kantorovitch mass transfer and its computational fluid mechanics formulation , 2002 .

[32]  Yann Brenier,et al.  A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem , 2000, Numerische Mathematik.

[33]  Eugene Stepanov,et al.  On Regularity of Transport Density in the Monge--Kantorovich Problem , 2003, SIAM J. Control. Optim..

[34]  C. Villani Optimal Transport: Old and New , 2008 .

[35]  Marco Cuturi,et al.  Sinkhorn Distances: Lightspeed Computation of Optimal Transport , 2013, NIPS.

[36]  Enrico Facca,et al.  Towards a Stationary Monge-Kantorovich Dynamics: The Physarum Polycephalum Experience , 2016, SIAM J. Appl. Math..

[37]  G. Buttazzo,et al.  Characterization of optimal shapes and masses through Monge-Kantorovich equation , 2001 .