Inter-Comparison of an Evolutionary Programming Model of Suspended Sediment Time-Series with Other Local Models

© 2012 Khatibi et al., licensee InTech. This is an open access chapter distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Inter-Comparison of an Evolutionary Programming Model of Suspended Sediment Time-Series with Other Local Models

[1]  O. Kisi,et al.  A genetic programming approach to suspended sediment modelling , 2008 .

[2]  秦 浩起,et al.  Characterization of Strange Attractor (カオスとその周辺(基研長期研究会報告)) , 1987 .

[3]  Ozgur Kisi,et al.  Suspended sediment estimation using neuro-fuzzy and neural network approaches/Estimation des matières en suspension par des approches neurofloues et à base de réseau de neurones , 2005 .

[4]  Theiler,et al.  Spurious dimension from correlation algorithms applied to limited time-series data. , 1986, Physical review. A, General physics.

[5]  P. Grassberger,et al.  Characterization of Strange Attractors , 1983 .

[6]  Luca Ridolfi,et al.  Nonlinear analysis of river flow time sequences , 1997 .

[7]  R. Ferguson River Loads Underestimated by Rating Curves , 1986 .

[8]  F. Takens Detecting strange attractors in turbulence , 1981 .

[9]  H. Abarbanel,et al.  Determining embedding dimension for phase-space reconstruction using a geometrical construction. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[10]  Y. C. Lee,et al.  Evolution, Learning And Cognition , 1988 .

[11]  Gokmen Tayfur,et al.  Artificial neural networks for estimating daily total suspended sediment in natural streams , 2006 .

[12]  Cândida Ferreira Gene Expression Programming in Problem Solving , 2002 .

[13]  Philipp Slusallek,et al.  Introduction to real-time ray tracing , 2005, SIGGRAPH Courses.

[14]  Bellie Sivakumar,et al.  A phase-space reconstruction approach to prediction of suspended sediment concentration in rivers , 2002 .

[15]  John A. Stankovic,et al.  Distributed Processing , 1978, Computer.

[16]  Holger Kantz,et al.  Practical implementation of nonlinear time series methods: The TISEAN package. , 1998, Chaos.

[17]  Sharad K. Jain,et al.  Development of Integrated Sediment Rating Curves Using ANNs , 2001 .

[18]  Ken-Ichi Itoh A method for predicting chaotic time‐series with outliers , 1995 .

[19]  A. W. Jayawardena,et al.  Sediment transport phenomenon in rivers: an alternative perspective , 2003, Environ. Model. Softw..

[20]  Tienfuan Kerh,et al.  Monitoring event-based suspended sediment concentration by artificial neural network models , 2008 .

[21]  G. D. Glysson,et al.  SEDIMENT-TRANSPORT CURVES , 1987 .

[22]  Farmer,et al.  Predicting chaotic time series. , 1987, Physical review letters.

[23]  Daniel S. Wilks,et al.  Representing Serial Correlation of Meteorological Events and Forecasts in Dynamic Decision–Analytic Models , 1991 .

[24]  O. Ks Multi-layer perceptrons with Levenberg-Marquardt training algorithm for suspended sediment concentration prediction and estimation , 2004 .

[25]  Mohammad Ali Ghorbani,et al.  Sea water level forecasting using genetic programming and comparing the performance with Artificial Neural Networks , 2010, Comput. Geosci..

[26]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[27]  M. C. Deo,et al.  Filling up gaps in wave data with genetic programming , 2008 .

[28]  G. Tayfur Artificial neural networks for sheet sediment transport , 2002 .

[29]  Robert M. Summers,et al.  The validity of a simple statistical model for estimating fluvial constituent loads: An Empirical study involving nutrient loads entering Chesapeake Bay , 1992 .

[30]  Cândida Ferreira,et al.  Gene Expression Programming: A New Adaptive Algorithm for Solving Problems , 2001, Complex Syst..

[31]  J. Doyne Farmer,et al.  Exploiting Chaos to Predict the Future and Reduce Noise , 1989 .

[32]  Bellie Sivakumar,et al.  An investigation of the presence of low-dimensional chaotic behaviour in the sediment transport phenomenon , 2002 .

[33]  Fraser,et al.  Independent coordinates for strange attractors from mutual information. , 1986, Physical review. A, General physics.

[34]  Ozgur Kisi,et al.  Methods to improve the neural network performance in suspended sediment estimation , 2006 .

[35]  H. K. Cigizoglu,et al.  ESTIMATION AND FORECASTING OF DAILY SUSPENDED SEDIMENT DATA BY MULTI-LAYER PERCEPTRONS , 2004 .

[36]  Robert B. Thomas Monitoring baseline suspended sediment in forested basins: the effects of sampling on suspended sediment rating curves , 1988 .

[37]  Özgür Kişi,et al.  Daily River Flow Forecasting Using Artificial Neural Networks and Auto-Regressive Models , 2005 .

[38]  Wesley W. Wallender,et al.  Predictability of River Flow and Suspended Sediment Transport in the Mississippi River Basin: A Non-linear Deterministic Approach , 2005 .