A scaled boundary polygon formulation for elasto-plastic analyses

This study presents a novel scaled boundary polygon formulation to model elasto-plastic material responses in structures. The polygons have flexible mesh generation capabilities and are more accurate than standard finite elements, especially for problems with cracks and notches. Shape functions of arbitrary n-sided polygons are constructed using the scaled boundary finite element method. These shape functions are conforming and linearly complete. When modeling a crack, strain singularities are analytically modeled without enrichment. Standard finite element procedures are used to formulate the stiffness matrix and residual load vector. The nonlinear material constitutive matrix and the internal stresses are approximated locally in each polygon by a polynomial function. The stiffness matrix and the residual load vector are matrix power integrals that can be evaluated analytically even when a strain singularity is present. Standard nonlinear equation solvers e.g. the modified Newton–Raphson algorithm are used to obtain the nonlinear response of the structure. The proposed formulation is validated using several numerical benchmarks.

[1]  M. Geneş,et al.  Dynamic soil–structure interaction analysis of layered unbounded media via a coupled finite element/boundary element/scaled boundary finite element model , 2005 .

[2]  K. Y. Dai,et al.  A Smoothed Finite Element Method for Mechanics Problems , 2007 .

[3]  H. Nguyen-Xuan,et al.  A novel singular ES-FEM for crack growth simulation , 2012 .

[4]  Glaucio H. Paulino,et al.  Polygonal finite elements for topology optimization: A unifying paradigm , 2010 .

[5]  Ernst Rank,et al.  A p‐version finite element approach for two‐ and three‐dimensional problems of the J2 flow theory with non‐linear isotropic hardening , 2002 .

[6]  F. Tin-Loi,et al.  Automatic modelling of cohesive crack propagation in concrete using polygon scaled boundary finite elements , 2012 .

[7]  Andrew Deeks,et al.  Fully-automatic modelling of cohesive crack growth using a finite element-scaled boundary finite element coupled method , 2007 .

[8]  Sabine Langer,et al.  SCALED BOUNDARY FINITE ELEMENT METHOD FOR ACOUSTICS , 2006 .

[9]  P. Milbradt,et al.  Polytope finite elements , 2008 .

[10]  J. Wolf,et al.  The scaled boundary finite-element method – alias consistent infinitesimal finite element cell method – for diffusion , 1999 .

[11]  Zhenjun Yang,et al.  Fully automatic modelling of mixed-mode crack propagation using scaled boundary finite element method , 2006 .

[12]  John A. Evans,et al.  Isogeometric analysis using T-splines , 2010 .

[13]  Gao Lin,et al.  A scaled boundary finite element method applied to electrostatic problems , 2012 .

[14]  Somnath Ghosh,et al.  Voronoi cell finite element model based on micropolar theory of thermoelasticity for heterogeneous materials , 1995 .

[15]  Ernst Rank,et al.  The p-version of the finite element method compared to an adaptive h-version for the deformation theory of plasticity , 2001 .

[16]  Stéphane Bordas,et al.  Strain smoothing in FEM and XFEM , 2010 .

[17]  N. Sukumar,et al.  Quadratic maximum-entropy serendipity shape functions for arbitrary planar polygons , 2013 .

[18]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[19]  Chongmin Song,et al.  A super‐element for crack analysis in the time domain , 2004 .

[20]  Guiyong Zhang,et al.  Analysis of elastic-plastic problems using edge-based smoothed finite element method , 2009 .

[21]  Ean Tat Ooi,et al.  Modelling crack propagation in reinforced concrete using a hybrid finite element-scaled boundary finite element method , 2011 .

[22]  Hong Hao,et al.  Transient dynamic fracture analysis using scaled boundary finite element method: a frequency-domain approach , 2007 .

[23]  Chongmin Song A matrix function solution for the scaled boundary finite-element equation in statics , 2004 .

[24]  Shijun Liao,et al.  The scaled boundary FEM for nonlinear problems , 2011 .

[25]  Hung Nguyen-Xuan,et al.  An n‐sided polygonal edge‐based smoothed finite element method (nES‐FEM) for solid mechanics , 2010 .

[26]  Andrew Deeks,et al.  Modelling cohesive crack growth using a two-step finite element-scaled boundary finite element coupled method , 2007 .

[27]  Chongmin Song,et al.  The scaled boundary finite-element method—alias consistent infinitesimal finite-element cell method—for elastodynamics , 1997 .

[28]  K. Y. Dai,et al.  An n-sided polygonal smoothed finite element method (nSFEM) for solid mechanics , 2007 .

[29]  Ernst Rank,et al.  A Numerical Investigation of High-Order Finite Elements for Problems of Elastoplasticity , 2002, J. Sci. Comput..

[30]  Wilfried Becker,et al.  Computation of 3-D stress singularities for multiple cracks and crack intersections by the scaled boundary finite element method , 2012, International Journal of Fracture.

[31]  F. Tin-Loi,et al.  Polygon scaled boundary finite elements for crack propagation modelling , 2012 .

[32]  F. Tin-Loi,et al.  A definition and evaluation procedure of generalized stress intensity factors at cracks and multi-material wedges , 2010 .

[33]  Development of polygon elements based on the scaled boundary finite element method , 2010 .

[34]  Chongmin Song,et al.  Evaluation of power-logarithmic singularities,T-stresses and higher order terms of in-plane singular stress fields at cracks and multi-material corners , 2005 .

[35]  A. Deeks,et al.  A hybrid meshless local Petrov-Galerkin method for unbounded domains. , 2007 .

[36]  Andrew Deeks,et al.  Use of higher‐order shape functions in the scaled boundary finite element method , 2006 .

[37]  F. Tin-Loi,et al.  A unified 3D‐based technique for plate bending analysis using scaled boundary finite element method , 2012 .

[38]  Eftychios Sifakis,et al.  An XFEM method for modeling geometrically elaborate crack propagation in brittle materials , 2011 .

[39]  Ean Tat Ooi,et al.  A hybrid finite element-scaled boundary finite element method for crack propagation modelling , 2010 .

[40]  K. Y. Sze,et al.  A novel hybrid finite element analysis of bimaterial wedge problems , 2001 .

[41]  T. Rabczuk,et al.  Three-dimensional crack initiation, propagation, branching and junction in non-linear materials by an extended meshfree method without asymptotic enrichment , 2008 .

[42]  Hung Nguyen-Xuan,et al.  High-order B-splines based finite elements for delamination analysis of laminated composites , 2013 .

[43]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[44]  J. Wolf,et al.  The scaled boundary finite element method , 2004 .

[45]  K. Y. Sze,et al.  Polygonal finite element method for nonlinear constitutive modeling of polycrystalline ferroelectrics , 2005 .

[46]  Bhushan Lal Karihaloo,et al.  Implementation of hybrid crack element on a general finite element mesh and in combination with XFEM , 2007 .

[47]  Ted Belytschko,et al.  The extended finite element method for dynamic fractures , 2005 .

[48]  N. Sukumar,et al.  Extended finite element method on polygonal and quadtree meshes , 2008 .

[49]  Somnath Ghosh,et al.  Extended Voronoi cell finite element model for multiple cohesive crack propagation in brittle materials , 2006 .

[50]  Leonardo Leonetti,et al.  Three field finite elements for the elastoplastic analysis of 2D continua , 2011 .

[51]  H. Nguyen-Xuan,et al.  An edge-based smoothed finite element method for visco-elastoplastic analyses of 2D solids using triangular mesh , 2009 .

[52]  E. Wachspress,et al.  A Rational Finite Element Basis , 1975 .

[53]  E. Jaynes Information Theory and Statistical Mechanics , 1957 .

[54]  J. Z. Zhu,et al.  The finite element method , 1977 .

[55]  Elías Cueto,et al.  Modelling three‐dimensional piece‐wise homogeneous domains using the α‐shape‐based natural element method , 2002 .

[56]  Francis Tin-Loi,et al.  Scaled boundary polygons with application to fracture analysis of functionally graded materials , 2014 .

[57]  Guirong Liu,et al.  An adaptive singular ES-FEM for mechanics problems with singular field of arbitrary order , 2013 .

[58]  Martin Reimers,et al.  Mean value coordinates in 3D , 2005, Comput. Aided Geom. Des..

[59]  Charles E. Augarde,et al.  Modelling Elasto-Plasticity Using the Hybrid MLPG Method , 2010 .

[60]  Chongmin Song,et al.  A continued‐fraction‐based high‐order transmitting boundary for wave propagation in unbounded domains of arbitrary geometry , 2008, International Journal for Numerical Methods in Engineering.

[61]  Hung Nguyen-Xuan,et al.  Isogeometric analysis of laminated composite and sandwich plates using a layerwise deformation theory , 2013 .

[62]  M. R. Eslami,et al.  Embedded interfaces by polytope FEM , 2011 .

[63]  D. Owen,et al.  Finite elements in plasticity : theory and practice , 1980 .

[64]  Mark Meyer,et al.  Generalized Barycentric Coordinates on Irregular Polygons , 2002, J. Graphics, GPU, & Game Tools.

[65]  N. Sukumar Construction of polygonal interpolants: a maximum entropy approach , 2004 .

[66]  S. C. Fan,et al.  Dynamic Fluid-Structure Interaction Analysis Using Boundary Finite Element Method–Finite Element Method , 2005 .

[67]  John P. Wolf,et al.  Semi-analytical representation of stress singularities as occurring in cracks in anisotropic multi-materials with the scaled boundary finite-element method , 2002 .

[68]  S. Rahman,et al.  An enriched meshless method for non‐linear fracture mechanics , 2004 .

[69]  Andrew Deeks,et al.  Determination of coefficients of crack tip asymptotic fields using the scaled boundary finite element method , 2005 .

[70]  James Doherty,et al.  Adaptive coupling of the finite-element and scaled boundary finite-element methods for non-linear analysis of unbounded media , 2005 .

[71]  J. Wolf,et al.  Consistent Infinitesimal Finite-Element Cell Method for Incompressible Unbounded Medium , 1997 .

[72]  C. Augarde,et al.  A coupled BEM/scaled boundary FEM formulation for accurate computations in linear elastic fracture mechanics , 2010 .

[73]  T. Pian Derivation of element stiffness matrices by assumed stress distributions , 1964 .

[74]  Somnath Ghosh,et al.  Elastic-plastic analysis of arbitrary heterogeneous materials with the Voronoi Cell finite element method , 1995 .

[75]  Chongmin Song,et al.  Development of a fundamental‐solution‐less boundary element method for exterior wave problems , 2006 .

[76]  N. Sukumar,et al.  Generalized Gaussian quadrature rules on arbitrary polygons , 2010 .

[77]  N. Sukumar,et al.  Conforming polygonal finite elements , 2004 .

[78]  Stéphane Bordas,et al.  Numerical integration over arbitrary polygonal domains based on Schwarz–Christoffel conformal mapping , 2009 .

[79]  Yuri Bazilevs,et al.  Rotation free isogeometric thin shell analysis using PHT-splines , 2011 .