An Introduction to Regular Categories

This paper provides a short introduction to the notion of regular category and its use in categorical algebra. We first prove some of its basic properties, and consider some fundamental algebraic examples. We then analyse the algebraic properties of the categories satisfying the additional Mal'tsev axiom, and then the weaker Goursat axiom. These latter contexts can be seen as the categorical counterparts of the properties of $2$-permutability and of $3$-permutability of congruences in universal algebra. Mal'tsev and Goursat categories have been intensively studied in the last years: we present here some of their basic properties, which are useful to read more advanced texts in categorical algebra.

[1]  David A. Buchsbaum,et al.  Exact categories and duality , 1955 .

[2]  D. Bourn 3 × 3 Lemma and Protomodularity , 2001 .

[3]  F. Borceux Handbook of Categorical Algebra: Contents , 1994 .

[4]  J. Riguet,et al.  Relations binaires, fermetures, correspondances de Galois , 1948 .

[5]  D. Bourn,et al.  Regular, Protomodular and Abelian Categories , 2004 .

[6]  Walter Tholen,et al.  Categorical foundations : special topics in order, topology, algebra, and Sheaf theory , 2003 .

[7]  Joachim Lambek,et al.  Diagram chasing in Mal'cev categories , 1991 .

[8]  Marino Gran,et al.  The Cuboid Lemma and Mal’tsev Categories , 2014, Appl. Categorical Struct..

[9]  Marino Gran,et al.  Beck-Chevalley condition and Goursat categories , 2015, 1512.04066.

[10]  Jorge Picado,et al.  Notes on Point-Free Topology , 2021, New Perspectives in Algebra, Topology and Categories.

[11]  Z. Janelidze THE POINTED SUBOBJECT FUNCTOR, 3 3 LEMMAS, AND SUBTRACTIVITY OF SPANS Dedicated to Dominique Bourn on the occasion of his sixtieth birthday , 2010 .

[12]  Marino Gran,et al.  Semi-abelian monadic categories , 2004 .

[13]  Variations of the Shifting Lemma and Goursat categories , 2018, Algebra universalis.

[14]  G. M. Kelly,et al.  Some remarks on Maltsev and Goursat categories , 1993, Appl. Categorical Struct..

[15]  Jonathan D. H. Smith Mal'cev Varieties , 1977 .

[16]  G. Pelletier regular , 2021, Indian Journal of Structure Engineering.

[17]  Sally Popkorn,et al.  A Handbook of Categorical Algebra , 2009 .

[18]  The 3-by-3 lemma for regular Goursat categories , 2004 .

[19]  P. Johnstone,et al.  REVIEWS-Sketches of an elephant: A topos theory compendium , 2003 .

[20]  Aaron Klein Relations in categories , 1970 .

[21]  D. Bourn The denormalized 3×3 lemma , 2003 .

[22]  A. Ursini,et al.  Ideals in universal algebras , 1984 .

[23]  P. Freyd Abelian categories : an introduction to the theory of functors , 1965 .

[24]  J. Vercruysse,et al.  A semi-abelian extension of a theorem by Takeuchi , 2018, Journal of Pure and Applied Algebra.

[25]  F. Borceux,et al.  Topological semi-abelian algebras , 2005 .

[26]  Marino Gran,et al.  A New Characterisation of Goursat Categories , 2012, Appl. Categorical Struct..

[27]  D. Bourn,et al.  On the Naturalness of Mal’tsev Categories , 2019, 1904.06719.

[28]  W. Tholen,et al.  Semi-abelian categories , 2002 .

[29]  Gorjan Alagic,et al.  #p , 2019, Quantum information & computation.

[30]  J. Hagemann,et al.  Onn-permutable congruences , 1973 .

[31]  Michael Barr,et al.  Exact categories and categories of sheaves , 1971 .

[32]  Zurab Janelidze,et al.  3 × 3 lemma for star-exact sequences , 2012 .

[33]  Daniel Murfet,et al.  Abelian Categories , 2006 .

[34]  M. Gran Central extensions and internal groupoids in Maltsev categories , 2001 .