Collocated H∞ Control of a Cantilevered Beam using an Analytical Upper-bound Approach

This article examines the collocated H∞ control of vector second-order structural systems using an analytical upper-bound method. The structural system considered in this work is that of a cantilevered aluminum beam with a collocated pair of piezoceramic patches to serve as actuators and sensors. An explicit expression that bounds the H∞ norm of collocated structural systems is applied for analysis and control synthesis, resulting in significant computational advantages compared to standard H ∞ analysis and control methods. The proposed approximation method is used to design a static output feedback controller that guarantees a closed-loop H∞ norm less than any user-defined value. This method is validated using a finite element representation of the beam, and then verified experimentally.

[1]  A.N. Moser Designing controllers for flexible structures with H-infinity/ mu -synthesis , 1993, IEEE Control Systems.

[2]  S. O. Reza Moheimani,et al.  Spatial 𝒽2 control of a piezoelectric laminate beam: experimental implementation , 2002, IEEE Trans. Control. Syst. Technol..

[3]  M. Balas Direct Velocity Feedback Control of Large Space Structures , 1979 .

[4]  André Preumont,et al.  Vibration Control of Active Structures: An Introduction , 2018 .

[5]  Minh Q. Phan,et al.  Identification and control of mechanical systems , 2001 .

[6]  Karolos M. Grigoriadis,et al.  Experimental verification of an analytical bound H∞ norm collocated control approach , 2005, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[7]  Stephen P. Boyd,et al.  A bisection method for computing the H∞ norm of a transfer matrix and related problems , 1989, Math. Control. Signals Syst..

[8]  P. M. Prenter Splines and variational methods , 1975 .

[9]  E. Crawley,et al.  Use of piezoelectric actuators as elements of intelligent structures , 1987 .

[10]  Paolo L. Gatti,et al.  Introduction to Dynamics and Control of Flexible Structures , 1996 .

[11]  S. O. Reza Moheimani Experimental verification of the corrected transfer function of a piezoelectric laminate beam , 2000, IEEE Trans. Control. Syst. Technol..

[12]  Maurice Petyt,et al.  Introduction to finite element vibration analysis , 1990 .

[13]  Ralph C. Smith,et al.  Smart material systems - model development , 2005, Frontiers in applied mathematics.

[14]  Demeter G. Fertis Dynamics and vibration of structures , 1973 .

[15]  Jann N. Yang,et al.  H∞‐based control strategies for civil engineering structures , 2003 .

[16]  Daniel J. Inman,et al.  Vibration: With Control, Measurement, and Stability , 1989 .

[17]  M. Petyt,et al.  Introduction to Finite Element Vibration Analysis , 2016 .

[18]  Karolos M. Grigoriadis,et al.  A unified algebraic approach to linear control design , 1998 .

[19]  Karolos M. Grigoriadis,et al.  Stabilization and H∞ control of symmetric systems: an explicit solution , 2001, Syst. Control. Lett..

[20]  M. Steinbuch,et al.  A fast algorithm to computer the H ∞ -norm of a transfer function matrix , 1990 .

[21]  R. Blevins,et al.  Formulas for natural frequency and mode shape , 1984 .

[22]  Harvey Thomas Banks,et al.  Smart material structures: Modeling, estimation, and control , 1996 .

[23]  Leonard Meirovitch,et al.  Computational Methods in Structural Dynamics , 1980 .

[24]  Roy S. Smith,et al.  The design of H∞ controllers for an experimental non-collocated flexible structure problem , 1994, IEEE Trans. Control. Syst. Technol..

[25]  Minh Q. Phan,et al.  Identification and Control of Mechanical Systems: Frontmatter , 2001 .

[26]  J. Doyle,et al.  Essentials of Robust Control , 1997 .

[27]  Wodek Gawronski,et al.  Advanced Structural Dynamics and Active Control of Structures , 2004 .

[28]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[29]  Karolos M. Grigoriadis,et al.  H∞ collocated control of structural systems : An analytical bound approach , 2005 .

[30]  S. O. R. Moheimani,et al.  Experimental implementation of spatial H/sub /spl infin// control on a piezoelectric-laminate beam , 2002 .

[31]  Peter Lancaster,et al.  Lambda-matrices and vibrating systems , 2002 .

[32]  Jan C. Willems,et al.  REALIZATION OF SYSTEMS WITH INTERNAL PASSIVITY AND SYMMETRY CONSTRAINTS , 1976 .