The numerical approximation of nonlinear Black–Scholes model for exotic path-dependent American options with transaction cost

In this paper, a new second-order exponential time differencing (ETD) method based on the Cox and Matthews approach is developed and applied for pricing American options with transaction cost. The method is seen to be strongly stable and highly efficient for solving the nonlinear Black–Scholes model. Furthermore, it does not incur unwanted oscillations unlike the ETD–Crank–Nicolson method for exotic path-dependent American options. The computational efficiency and reliability of the new method are demonstrated by numerical examples and by comparing it with the existing methods.

[1]  Daniel Sevcovic,et al.  On the risk-adjusted pricing-methodology-based valuation of vanilla options and explanation of the volatility smile , 2005 .

[2]  James A. Primbs,et al.  A new computational tool for analysing dynamic hedging under transaction costs , 2008 .

[3]  H. Amann Existence and stability of solutions for semi-linear parabolic systems, and applications to some diffusion reaction equations , 1978, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[4]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[5]  Jesús Vigo-Aguiar,et al.  On smoothing of the Crank-Nicolson scheme and higher order schemes for pricing barrier options , 2007 .

[6]  Matthias Ehrhardt,et al.  A high-order compact method for nonlinear Black–Scholes option pricing equations of American options , 2011, Int. J. Comput. Math..

[7]  Hitoshi Imai,et al.  On the Hoggard–Whalley–Wilmott Equation for the Pricing of Options with Transaction Costs , 2007 .

[8]  Jérémie Szeftel,et al.  A nonlinear approach to absorbing boundary conditions for the semilinear wave equation , 2006, Math. Comput..

[9]  Matthias Ehrhardt,et al.  A FAST, STABLE AND ACCURATE NUMERICAL METHOD FOR THE BLACK–SCHOLES EQUATION OF AMERICAN OPTIONS , 2008 .

[10]  Ansgar Jüngel,et al.  High Order Compact Finite Difference Schemes for a Nonlinear Black-Scholes Equation , 2001 .

[11]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[12]  Naoyuki Ishimura,et al.  Remarks on the Nonlinear Black-Scholes Equations with the Effect of Transaction Costs , 2010 .

[13]  Y. Mukaigawa,et al.  Large Deviations Estimates for Some Non-local Equations I. Fast Decaying Kernels and Explicit Bounds , 2022 .

[14]  M. Yousuf Efficient L-stable method for parabolic problems with application to pricing American options under stochastic volatility , 2009, Appl. Math. Comput..

[15]  Peter A. Forsyth,et al.  QUADRATIC CONVERGENCE OF A PENALTY METHOD FOR VALUING AMERICAN OPTIONS , 2000 .

[16]  Abdul-Qayyum M. Khaliq,et al.  High-order compact scheme for solving nonlinear Black–Scholes equation with transaction cost , 2009, Int. J. Comput. Math..

[17]  M. Yousuf,et al.  Pricing exotic options with L-stable Padé schemes , 2007 .

[18]  Smoothing properties and approximation of time derivatives for parabolic equations: constant time steps , 2003 .

[19]  Matthias Ehrhardt,et al.  Fixed Domain Transformations and Split–Step Finite Difference Schemes for Nonlinear Black–Scholes Equations for American Options , 2008 .

[20]  Peter A. Forsyth,et al.  Convergence remedies for non-smooth payoffs in option pricing , 2003 .

[21]  E. H. Twizell,et al.  On parallel algorithms for semidiscretized parabolic partial differential equations based on subdiagonal Padé approximations , 1993 .

[22]  乔花玲,et al.  关于Semigroups of Linear Operators and Applications to Partial Differential Equations的两个注解 , 2003 .

[23]  Jérémie Szeftel Absorbing boundary conditions for reaction–diffusion equations , 2003 .

[24]  P. Wilmott,et al.  Hedging Option Portfolios in the Presence of Transaction Costs , 2000 .

[25]  C. Loan,et al.  Nineteen Dubious Ways to Compute the Exponential of a Matrix , 1978 .

[26]  C. Chiarella,et al.  Evaluation of American strangles , 2002 .

[27]  Peter A. Forsyth,et al.  Quadratic Convergence for Valuing American Options Using a Penalty Method , 2001, SIAM J. Sci. Comput..

[28]  V. Thomée Galerkin Finite Element Methods for Parabolic Problems (Springer Series in Computational Mathematics) , 2010 .

[29]  V. Thomée,et al.  Incomplete iterations in multistep backward difference methods for parabolic problems with smooth and nonsmooth data , 1989 .

[30]  Bruce A. Wade,et al.  An ETD Crank‐Nicolson method for reaction‐diffusion systems , 2012 .

[31]  Robert H. Martin,et al.  Nonlinear operators and differential equations in Banach spaces , 1976 .

[32]  Xiaonan Wu,et al.  A Fast Numerical Method for the Black-Scholes Equation of American Options , 2003, SIAM J. Numer. Anal..

[33]  Cleve B. Moler,et al.  Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later , 1978, SIAM Rev..

[34]  Daniel Sevcovic,et al.  Transformation Methods for Evaluating Approximations to the Optimal Exercise Boundary for Linear and Nonlinear Black-Scholes Equations , 2008, 0805.0611.

[35]  S. Cox,et al.  Exponential Time Differencing for Stiff Systems , 2002 .

[36]  Daniel Sevcovic,et al.  Analysis of the free boundary for the pricing of an American call option , 2001, European Journal of Applied Mathematics.

[37]  P. Heider,et al.  Numerical Methods for Non-Linear Black–Scholes Equations , 2010 .