On the Origins and Control of Community Types in the Human Microbiome

Microbiome-based stratification of healthy individuals into compositional categories, referred to as “enterotypes” or “community types”, holds promise for drastically improving personalized medicine. Despite this potential, the existence of community types and the degree of their distinctness have been highly debated. Here we adopted a dynamic systems approach and found that heterogeneity in the interspecific interactions or the presence of strongly interacting species is sufficient to explain community types, independent of the topology of the underlying ecological network. By controlling the presence or absence of these strongly interacting species we can steer the microbial ecosystem to any desired community type. This open-loop control strategy still holds even when the community types are not distinct but appear as dense regions within a continuous gradient. This finding can be used to develop viable therapeutic strategies for shifting the microbial composition to a healthy configuration.

[1]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[2]  Stefanie Widder,et al.  Deciphering microbial interactions and detecting keystone species with co-occurrence networks , 2014, Front. Microbiol..

[3]  Z. D. Bai,et al.  Necessary and Sufficient Conditions for Almost Sure Convergence of the Largest Eigenvalue of a Wigner Matrix , 1988 .

[4]  Chris Sander,et al.  Precision microbiome restoration of bile acid-mediated resistance to Clostridium difficile , 2014, Nature.

[5]  F. Bushman,et al.  Linking Long-Term Dietary Patterns with Gut Microbial Enterotypes , 2011, Science.

[6]  T. Tao Topics in Random Matrix Theory , 2012 .

[7]  Kevin V. Solomon,et al.  Engineering microbes with synthetic biology frameworks. , 2008, Trends in biotechnology.

[8]  Christopher E. McKinlay,et al.  Rethinking "enterotypes". , 2014, Cell host & microbe.

[9]  Terence Tao,et al.  Random matrices: Universality of ESDs and the circular law , 2008, 0807.4898.

[10]  S. Dusko Ehrlich,et al.  MetaHIT: The European Union Project on Metagenomics of the Human Intestinal Tract , 2011 .

[11]  J. L. Massera Contributions to Stability Theory , 1956 .

[12]  Jianhua Lin,et al.  Divergence measures based on the Shannon entropy , 1991, IEEE Trans. Inf. Theory.

[13]  P. Gajer,et al.  Vaginal microbiome of reproductive-age women , 2010, Proceedings of the National Academy of Sciences.

[14]  M. Rantalainen,et al.  Top-down systems biology modeling of host metabotype-microbiome associations in obese rodents. , 2009, Journal of proteome research.

[15]  Stefan Bornholdt,et al.  Handbook of Graphs and Networks: From the Genome to the Internet , 2003 .

[16]  T. Tao,et al.  Random matrices: The Universality phenomenon for Wigner ensembles , 2012, 1202.0068.

[17]  A Tikhonov,et al.  Solution of Incorrectly Formulated Problems and the Regularization Method , 1963 .

[18]  J. Doob Classical potential theory and its probabilistic counterpart , 1984 .

[19]  G. W. Cross Three types of matrix stability , 1978 .

[20]  Peter J. Rousseeuw,et al.  Clustering by means of medoids , 1987 .

[21]  G. Church,et al.  Improving microbial fitness in the mammalian gut by in vivo temporal functional metagenomics , 2015, Molecular systems biology.

[22]  Mark E. J. Newman,et al.  Power-Law Distributions in Empirical Data , 2007, SIAM Rev..

[23]  Georg K Gerber,et al.  The dynamic microbiome , 2014, FEBS letters.

[24]  Anna Eklöf,et al.  Species loss and secondary extinctions in simple and complex model communities. , 2006, The Journal of animal ecology.

[25]  C. Press Cell host & microbe , 2007 .

[26]  Béla Bollobás,et al.  Directed scale-free graphs , 2003, SODA '03.

[27]  Adilson E Motter,et al.  Heterogeneity in oscillator networks: are smaller worlds easier to synchronize? , 2003, Physical review letters.

[28]  L. M. M.-T. Theory of Probability , 1929, Nature.

[29]  J. Bakken,et al.  Treating Clostridium difficile infection with fecal microbiota transplantation. , 2011, Clinical gastroenterology and hepatology : the official clinical practice journal of the American Gastroenterological Association.

[30]  N. Bingham Probability Theory: An Analytic View , 2002 .

[31]  R. Knight,et al.  Diversity, stability and resilience of the human gut microbiota , 2012, Nature.

[32]  Vanni Bucci,et al.  Towards predictive models of the human gut microbiome. , 2014, Journal of molecular biology.

[33]  R. Knight,et al.  Moving pictures of the human microbiome , 2011, Genome Biology.

[34]  Charles K. Fisher,et al.  Identifying Keystone Species in the Human Gut Microbiome from Metagenomic Timeseries Using Sparse Linear Regression , 2014, PloS one.

[35]  A. Hastings,et al.  Weak trophic interactions and the balance of nature , 1998, Nature.

[36]  K. Narendra,et al.  On a theorem of Redheffer concerning diagonal stability , 2009 .

[37]  V. Eijkhout Oral , 2018, Modern Pathology.

[38]  Kiyosi Itô On a stochastic integral equation , 1946 .

[39]  G. W. Milligan,et al.  Methodology Review: Clustering Methods , 1987 .

[40]  Maria Adler,et al.  Stable Adaptive Systems , 2016 .

[41]  Gunnar Rätsch,et al.  Ecological Modeling from Time-Series Inference: Insight into Dynamics and Stability of Intestinal Microbiota , 2013, PLoS Comput. Biol..

[42]  Curtis Huttenhower,et al.  A Guide to Enterotypes across the Human Body: Meta-Analysis of Microbial Community Structures in Human Microbiome Datasets , 2013, PLoS Comput. Biol..

[43]  H. Dupont,et al.  The intestinal microbiota and chronic disorders of the gut , 2011, Nature Reviews Gastroenterology &Hepatology.

[44]  P. Bork,et al.  Enterotypes of the human gut microbiome , 2011, Nature.

[45]  A. Rbnyi ON THE EVOLUTION OF RANDOM GRAPHS , 2001 .

[46]  Albert-László Barabási,et al.  Controllability of complex networks , 2011, Nature.

[47]  Katherine H. Huang,et al.  A framework for human microbiome research , 2012, Nature.

[48]  Lewontin Rc,et al.  The Meaning of Stability , 2020, The Early Mubarak Years 1982–1988.

[49]  E. Borenstein,et al.  Metabolic modeling of species interaction in the human microbiome elucidates community-level assembly rules , 2013, Proceedings of the National Academy of Sciences.

[50]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[51]  G. Church,et al.  Recent progress in engineering human-associated microbiomes. , 2014, Methods in molecular biology.

[52]  M. Emmerson,et al.  Predator–prey body size, interaction strength and the stability of a real food web , 2004 .

[53]  Miroslav Krstic,et al.  Stabilization of stochastic nonlinear systems driven by noise of unknown covariance , 2001, IEEE Trans. Autom. Control..

[54]  P. Meyer Probability and potentials , 1966 .

[55]  J. Pepper,et al.  The emerging medical ecology of the human gut microbiome. , 2012, Trends in ecology & evolution.

[56]  James J Collins,et al.  Programmable bacteria detect and record an environmental signal in the mammalian gut , 2014, Proceedings of the National Academy of Sciences.

[57]  Kristian Kirsch,et al.  Theory Of Ordinary Differential Equations , 2016 .

[58]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[59]  Ashley Gribbins,et al.  Recurrent Clostridium difficile infection. , 2013, Advance for NPs & PAs.

[60]  J. Clemente,et al.  The Long-Term Stability of the Human Gut Microbiota , 2013 .

[61]  Makedonka Mitreva,et al.  Exploration of bacterial community classes in major human habitats , 2014, Genome Biology.

[62]  R. Paine A Conversation on Refining the Concept of Keystone Species , 1995 .

[63]  F. Shanahan,et al.  Categorization of the gut microbiota: enterotypes or gradients? , 2012, Nature Reviews Microbiology.

[64]  Alessandro Vespignani,et al.  Epidemic spreading in scale-free networks. , 2000, Physical review letters.

[65]  L. You,et al.  Engineering microbial systems to explore ecological and evolutionary dynamics. , 2012, Current opinion in biotechnology.

[66]  P. Schloss,et al.  Dynamics and associations of microbial community types across the human body , 2014, Nature.

[67]  Frank L. Lewis,et al.  Aircraft Control and Simulation , 1992 .

[68]  Falk Hildebrand,et al.  Inflammation-associated enterotypes, host genotype, cage and inter-individual effects drive gut microbiota variation in common laboratory mice , 2013, Genome Biology.

[69]  E. Wigner Characteristic Vectors of Bordered Matrices with Infinite Dimensions I , 1955 .

[70]  L AldersonDavid,et al.  Contrasting views of complexity and their implications for network-centric infrastructures , 2010 .

[71]  G. Russell,et al.  Oral, capsulized, frozen fecal microbiota transplantation for relapsing Clostridium difficile infection. , 2014, JAMA.

[72]  M. F.,et al.  Bibliography , 1985, Experimental Gerontology.

[73]  R. Khasminskii Stochastic Stability of Differential Equations , 1980 .

[74]  K. Narendra,et al.  Robust adaptive control in the presence of bounded disturbances , 1986 .

[75]  J. Jensen Sur les fonctions convexes et les inégalités entre les valeurs moyennes , 1906 .

[76]  J. E. Glynn,et al.  Numerical Recipes: The Art of Scientific Computing , 1989 .

[77]  J. Doré,et al.  Mathematical modelling of carbohydrate degradation by human colonic microbiota. , 2010, Journal of theoretical biology.

[78]  Eric J Alm,et al.  Host lifestyle affects human microbiota on daily timescales , 2014, Genome Biology.

[79]  Charles K. Fisher,et al.  The transition between the niche and neutral regimes in ecology , 2013, Proceedings of the National Academy of Sciences.

[80]  D. Relman The human microbiome: ecosystem resilience and health. , 2012, Nutrition reviews.

[81]  R. Lewontin,et al.  The meaning of stability. , 2020, Brookhaven symposia in biology.

[82]  Wenying Shou,et al.  Engineering and Analyzing Multicellular Systems , 2014, Methods in Molecular Biology.

[83]  Jenny Sauk,et al.  Fecal microbiota transplant for relapsing Clostridium difficile infection using a frozen inoculum from unrelated donors: a randomized, open-label, controlled pilot study. , 2014, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[84]  James J Collins,et al.  Syntrophic exchange in synthetic microbial communities , 2014, Proceedings of the National Academy of Sciences.

[85]  D. Sinderen,et al.  Gut microbiota composition correlates with diet and health in the elderly , 2012, Nature.

[86]  Jun Wang,et al.  Addendum: Enterotypes of the human gut microbiome , 2014, Nature.

[87]  Terrence Tao,et al.  An Introduction To Measure Theory , 2011 .

[88]  Tamer Basar Control System Synthesis by Root Locus Method , 2001 .

[89]  Sophie J. Weiss,et al.  Dynamic changes in short- and long-term bacterial composition following fecal microbiota transplantation for recurrent Clostridium difficile infection , 2015, Microbiome.

[90]  John Doyle,et al.  Contrasting Views of Complexity and Their Implications For Network-Centric Infrastructures , 2010, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[91]  T. Caliński,et al.  A dendrite method for cluster analysis , 1974 .

[92]  J. Raes,et al.  Microbial interactions: from networks to models , 2012, Nature Reviews Microbiology.

[93]  P. Protter Stochastic integration and differential equations , 1990 .

[94]  E. Wigner On the Distribution of the Roots of Certain Symmetric Matrices , 1958 .

[95]  D. Relman,et al.  The Application of Ecological Theory Toward an Understanding of the Human Microbiome , 2012, Science.

[96]  J. Connell,et al.  On the Evidence Needed to Judge Ecological Stability or Persistence , 1983, The American Naturalist.

[97]  Elliott W. Montroll,et al.  Nonlinear Population Dynamics. (Book Reviews: On the Volterra and Other Nonlinear Models of Interacting Populations) , 1971 .

[98]  S. Mazmanian,et al.  The gut microbiota shapes intestinal immune responses during health and disease , 2009, Nature Reviews Immunology.

[99]  Walter Willinger,et al.  Towards a Theory of Scale-Free Graphs: Definition, Properties, and Implications , 2005, Internet Math..

[100]  B. Goh Global Stability in Many-Species Systems , 1977, The American Naturalist.

[101]  Intawat Nookaew,et al.  Understanding the interactions between bacteria in the human gut through metabolic modeling , 2013, Scientific Reports.

[102]  Katherine H. Huang,et al.  Structure, Function and Diversity of the Healthy Human Microbiome , 2012, Nature.

[103]  R. Paine,et al.  Food-web analysis through field measurement of per capita interaction strength , 1992, Nature.

[104]  A. Fuller,et al.  Stability of Motion , 1976, IEEE Transactions on Systems, Man, and Cybernetics.

[105]  Simeone Marino,et al.  Mathematical modeling of primary succession of murine intestinal microbiota , 2013, Proceedings of the National Academy of Sciences.

[106]  Albert-László Barabási,et al.  Fundamental limitations of network reconstruction , 2015, ArXiv.

[107]  William A. Walters,et al.  Conducting a Microbiome Study , 2014, Cell.