Electric propulsion for satellites and spacecraft: established technologies and novel approaches

This contribution presents a short review of electric propulsion (EP) technologies for satellites and spacecraft. Electric thrusters, also termed ion or plasma thrusters, deliver a low thrust level compared to their chemical counterparts, but they offer significant advantages for in-space propulsion as energy is uncoupled to the propellant, therefore allowing for large energy densities. Although the development of EP goes back to the 1960s, the technology potential has just begun to be fully exploited because of the increase in the available power aboard spacecraft, as demonstrated by the very recent appearance of all-electric communication satellites. This article first describes the fundamentals of EP: momentum conservation and the ideal rocket equation, specific impulse and thrust, figures of merit and a comparison with chemical propulsion. Subsequently, the influence of the power source type and characteristics on the mission profile is discussed. Plasma thrusters are classically grouped into three categories according to the thrust generation process: electrothermal, electrostatic and electromagnetic devices. The three groups, along with the associated plasma discharge and energy transfer mechanisms, are presented via a discussion of long-standing technologies like arcjet thrusters, magnetoplasmadynamic thrusters, pulsed plasma thrusters and ion engines, as well as Hall thrusters and variants. More advanced concepts and new approaches for performance improvement are discussed afterwards: magnetic shielding and wall-less configurations, negative ion thrusters and plasma acceleration with a magnetic nozzle. Finally, various alternative propellant options are analyzed and possible research paths for the near future are examined.

[1]  Keith A. McFall,et al.  Investigation of propellant inefficiencies in a pulsed plasma thruster , 1996 .

[2]  LIQUID PROPELLANT PULSED PLASMA THRUSTER , 2003 .

[3]  Dan M. Goebel,et al.  Magnetic shielding of walls from the unmagnetized ion beam in a Hall thruster , 2013 .

[4]  C. Charles,et al.  Volume and surface propellant heating in an electrothermal radio-frequency plasma micro-thruster , 2014 .

[5]  C. Charles,et al.  A supersonic ion beam generated by a current-free helicon double-layer , 2003 .

[6]  J. Jarrige,et al.  Characterization of a coaxial ECR plasma thruster , 2013 .

[7]  S. Tsikata,et al.  Three-dimensional structure of electron density fluctuations in the Hall thruster plasma: E¯×B¯ mode , 2010 .

[8]  J. Adam,et al.  High-frequency electron drift instability in the cross-field configuration of Hall thrusters , 2006 .

[9]  A. Lichtenberg,et al.  Principles of Plasma Discharges and Materials Processing , 1994 .

[10]  M. Lieberman,et al.  Global model of Ar, O2, Cl2, and Ar/O2 high‐density plasma discharges , 1995 .

[11]  S. Mazouffre Laser-induced fluorescence diagnostics of the cross-field discharge of Hall thrusters , 2012 .

[12]  E. Ahedo,et al.  Combined effects of electron partial thermalization and secondary emission in Hall thruster discharges , 2007 .

[13]  N. Fisch,et al.  Cross-field electron transport induced by a rotating spoke in a cylindrical Hall thruster , 2012 .

[14]  Michael J. Patterson,et al.  High Thrust-to-Power Annular Engine Technology , 2015 .

[15]  J. Sercel Electron-cyclotron-resonance (ECR) plasma acceleration , 1987 .

[16]  M. Merino,et al.  Influence of Electron and Ion Thermodynamics on the Magnetic Nozzle Plasma Expansion , 2015, IEEE Transactions on Plasma Science.

[17]  Boris N. Breizman,et al.  Theoretical components of the VASIMR plasma propulsion concept , 2004 .

[18]  K. Dannenmayer,et al.  Ionization and acceleration processes in a small, variable channel width, permanent-magnet Hall thruster , 2012 .

[19]  E. B. Hooper,et al.  Plasma detachment from a magnetic nozzle , 1991 .

[20]  John W. Dankanich,et al.  Low-thrust Propulsion Technologies, Mission Design, and Application , 2010 .

[21]  S. Mazouffre,et al.  Observation of high-frequency ion instabilities in a cross-field plasma , 2015 .

[22]  A. Aanesland,et al.  Global model of a gridded-ion thruster powered by a radiofrequency inductive coil , 2012 .

[24]  Edgar Y. Choueiri,et al.  A Critical History of Electric Propulsion: The First 50 Years (1906-1956) , 2004 .

[25]  Christine Charles,et al.  Investigation of radiofrequency plasma sources for space travel , 2012 .

[26]  M. Keidar,et al.  Modeling of a high-power thruster with anode layer , 2004 .

[27]  Vaios Lappas,et al.  Direct thrust measurement of a permanent magnet helicon double layer thruster , 2011 .

[28]  W. Choe,et al.  Effect of magnetic field configuration on the multiply charged ion and plume characteristics in Hall thruster plasmas , 2015 .

[29]  S. Mazouffre,et al.  Elementary Scaling Relations for Hall Effect Thrusters , 2011 .

[30]  J. Jarrige,et al.  Performance Comparison of an ECR Plasma Thruster using Argon and Xenon as Propellant Gas , 2013 .

[31]  Francis F. Chen,et al.  Helicons-the early years , 1997 .

[32]  Michael D. West,et al.  Testing a Helicon Double Layer Thruster Immersed in a Space-Simulation Chamber , 2008 .

[33]  Günter Dr. Kornfeld,et al.  Physics and Evolution of HEMP-Thrusters , 2007 .

[34]  Mark A. Cappelli,et al.  Ion Velocity and Plasma Potential Measurements of a Cylindrical Cusped Field Thruster , 2012 .

[35]  Michael Keidar,et al.  The VHITAL Program to Demonstrate the Performance and Lifetime of a Bismuth-Fueled Very High Isp Hall Thruster , 2005 .

[36]  K. Nishiyama,et al.  Powered Flight of Electron Cyclotron Resonance Ion Engines on Hayabusa Explorer , 2007 .

[37]  Arnold J. Kelly,et al.  Mass savings domain of plasma propulsion for LEO to GEO transfer , 1993 .

[38]  A. M. Pichitino Rocket propulsion elements: by George P. Sutton. 294 pages, 14 × 22 cm., illustrations, plates. New York, John Wiley & Sons, Inc., 1949. Price, $4.50 , 1949 .

[39]  A. Fruchtman Energizing and depletion of neutrals by a collisional plasma , 2008 .

[40]  Robert S. Jankovsky,et al.  A Hall Thruster Performance Model Incorporating the Effects of a Multiply-Charged Plasma , 2001 .

[41]  Lee S. Mason,et al.  Development of NASA's Small Fission Power System for Science and Human Exploration , 2015 .

[42]  A. Sasoh,et al.  Technology and Application Aspects of Applied Field Magnetoplasmadynamic Propulsion , 1998 .

[43]  Pascal Chabert,et al.  Space Exploration Technologies Pegases A new promising electric propulsion concept , 2011 .

[44]  N. Hershkowitz,et al.  Ambipolar ion acceleration in an expanding magnetic nozzle , 2011 .

[45]  R. Welle Space propulsion applications of helium arcjets , 1997 .

[46]  Denis Packan,et al.  Optimization of a coaxial electron cyclotron resonance plasma thruster with an analytical model , 2015 .

[47]  V. Godyak,et al.  Electron energy distribution function and plasma parameters across magnetic filters , 2012 .

[48]  Kyoichi Kuriki,et al.  Transitional Behavior of MPD Arcjet Operation , 1978 .

[49]  Christine Charles,et al.  Current-free double-layer formation in a high-density helicon discharge , 2003 .

[50]  I. Mikellides,et al.  Magnetic shielding of a laboratory Hall thruster. II. Experiments , 2014 .

[51]  Paul McNamara,et al.  The LISA Pathfinder Mission , 2010 .

[52]  J. Adam,et al.  Anomalous conductivity in Hall thrusters: Effects of the non-linear coupling of the electron-cyclotron drift instability with secondary electron emission of the walls , 2013 .

[53]  M. Merino,et al.  Plasma detachment in a propulsive magnetic nozzle via ion demagnetization , 2014 .

[54]  J. Jarrige,et al.  Experimental geometry investigation of a coaxial ECR plasma thruster , 2015 .

[55]  Michael R. LaPointe,et al.  High Power MPD Thruster Performance Measurements , 2004 .

[56]  R. S. Robinson,et al.  Physics of closed drift thrusters , 1999 .

[57]  F. C. Díaz The VASIMR Rocket. , 2000 .

[58]  E. Ahedo Double-layer formation and propulsive assessment for a three-species plasma expanding in a magnetic nozzle , 2011 .

[59]  Lee S. Mason,et al.  Kilopower, NASA's Small Fission Power System for Science and Human Exploration , 2014 .

[60]  David H. Manzella,et al.  Investigation of the Erosion Characteristics of a Laboratory Hall Thruster , 2003 .

[61]  A. Rezaeiha,et al.  Review of Worldwide Activities in Liquid-Fed Pulsed Plasma Thruster , 2014 .

[62]  Michael J. Patterson,et al.  Near-Term High Power Ion Propulsion Options for Earth- Orbital Applications , 2009 .

[63]  P. Turchi,et al.  Pulsed Plasma Thruster , 1998 .

[64]  L. Garrigues,et al.  Model analysis of a double-stage Hall effect thruster with double-peaked magnetic field and intermediate electrode , 2007 .

[65]  P. Rossetti,et al.  Performance of an Applied Field MPD Thruster , 2001 .

[66]  James E. Polk,et al.  Implementation and Initial Validation of a 100-Kilowatt Class Nested-Channel Hall Thruster , 2014 .

[67]  Paul A. Abell,et al.  The Asteroid Redirect Mission and sustainable human exploration , 2015 .

[68]  Mitchell L. R. Walker,et al.  Ion production cost of a gridded helicon ion thruster , 2013 .

[69]  James E. Polk,et al.  Implementation and Initial Validation of a 100-kW Class Nested-channel Hall Thruster , 2014 .

[70]  C. L. Dailey,et al.  Large inductive thruster performance measurement , 1981 .

[71]  A. Morozov,et al.  Fundamentals of Stationary Plasma Thruster Theory , 2000 .

[72]  C. Charles,et al.  Performance characterization of a helicon double layer thruster using direct thrust measurements , 2011 .

[73]  Dominique Harribey,et al.  Visual Evidence of Magnetic Shielding With the PPS-Flex Hall Thruster , 2014, IEEE Transactions on Plasma Science.

[74]  Kenichi Kubota,et al.  Numerical Investigation of Ionization and Acceleration Processed in a Self-Field MPD Thruster , 2005 .

[75]  E. Ahedo,et al.  Low-frequency model of breathing oscillations in Hall discharges. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[76]  Dario Izzo,et al.  Very high delta-V missions to the edge of the solar system and beyond enabled by the dual-stage 4-grid ion thruster concept , 2006 .

[77]  H. Loeb Plasma-based ion beam sources , 2005 .

[78]  Paul J. Wilbur,et al.  Ion Thruster Development Trends and Status in the United States , 1998 .

[79]  Dominique Harribey,et al.  Optimization of a wall-less Hall thruster , 2015 .

[80]  Eduardo Ahedo,et al.  A model of the two-stage Hall thruster discharge , 2005 .

[81]  G. Janes,et al.  Anomalous Electron Diffusion and Ion Acceleration in a Low‐Density Plasma , 1966 .

[82]  Manuel Martinez-Sanchez,et al.  Experimentally Characterizing the Plume of a Divergent Cusped-Field Thruster , 2009 .

[83]  K. Dannenmayer,et al.  Examination of plasma-wall interactions in Hall effect thrusters by means of calibrated thermal imaging , 2007 .

[84]  E. Choueiri Fundamental difference between the two Hall thruster variants , 2001 .

[85]  I. Mikellides,et al.  Magnetic shielding of a laboratory Hall thruster. I. Theory and validation , 2014 .

[86]  N. Fisch,et al.  Electron-wall Interaction in Hall Thrusters , 2005 .

[87]  Mitchell L. R. Walker,et al.  A review of research in low earth orbit propellant collection , 2015 .

[88]  E. Ahedo,et al.  Effects of the radial plasma-wall interaction on the Hall thruster discharge , 2003 .

[89]  David Y. Oh Evaluation of Solar Electric Propulsion Technologies for Discovery Class Missions , 2007 .

[90]  A. Fruchtman,et al.  Electric field in a double layer and the imparted momentum. , 2006, Physical review letters.

[91]  F. C. Díaz An overview of the VASIMR engine: High power space propulsion with RF plasma generation and heating , 2002 .

[92]  I. Mikellides,et al.  Magnetic shielding of Hall thrusters at high discharge voltages , 2014 .

[93]  V. Kim Main Physical Features and Processes Determining the Performance of Stationary Plasma Thrusters , 1998 .

[94]  Gregory A. Jerman,et al.  Propulsion System Development for the Iodine Satellite (iSAT) Demonstration Mission , 2015 .

[95]  M. Walker,et al.  Thrust Measurements of a Helicon Plasma Source , 2011 .

[96]  Samudra E. Haque,et al.  Electric propulsion for small satellites , 2014 .

[97]  L. Garrigues,et al.  Anomalous conductivity and secondary electron emission in Hall effect thrusters , 2006 .

[98]  Daniel G. Courtney,et al.  Diverging Cusped-Field Hall Thruster ( DCHT ) IEPC-2007-39 , 2007 .

[99]  A. Aanesland,et al.  E × B probe measurements in molecular and electronegative plasmas. , 2015, The Review of scientific instruments.

[100]  Edgar Y. Choueiri,et al.  Scaling laws for electromagnetic pulsed plasma thrusters , 2001 .

[101]  Michael Keidar,et al.  Magnetically enhanced vacuum arc thruster , 2005 .

[102]  Brian E. Beal,et al.  Plasma Properties in the Plume of a Hall Thruster Cluster , 2004 .

[103]  Eduardo Ahedo,et al.  Presheath/sheath model with secondary electron emission from two parallel walls , 2002 .

[104]  Dmytro Rafalskyi,et al.  Experimental validation of the dual positive and negative ion beam acceleration in the plasma propulsion with electronegative gases thruster , 2014 .

[105]  James Szabo,et al.  High Density Hall Thruster Propellant Investigations , 2012 .

[106]  W. Choe,et al.  Radial scale effect on the performance of low-power cylindrical Hall plasma thrusters , 2013 .

[107]  Artem Smirnov,et al.  Enhanced ionization in the cylindrical Hall thruster , 2002 .

[108]  P. Schreiner,et al.  In Search of Alternative Propellants for Ion Thrusters IEPC-2015-320 / ISTS-2015-b-320 , 2015 .

[109]  N. Meezan,et al.  Anomalous electron mobility in a coaxial Hall discharge plasma. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[110]  E. Ahedo Plasmas for space propulsion , 2011 .

[111]  Francis M. Curran,et al.  Extended life and performance test of a low-power arcjet , 1992 .

[112]  Pascal Chabert,et al.  Physics of radio-frequency plasmas , 2011 .

[113]  M. Walker,et al.  Effect of secondary electron emission on the plasma sheath , 2015 .

[114]  C. L. Dailey,et al.  Large inductive thruster performance measurement , 1981 .

[115]  Adam Boxberger,et al.  Experimental Investigation of Steady-State Applied-Field Magnetoplasmadynamic Thrusters at Institute of Space Systems , 2012 .

[116]  Manuel Martinez-Sanchez,et al.  Hybrid Particle-in-Cell Erosion Modeling of Two Hall Thrusters , 2008 .

[117]  A. Gallimore,et al.  Measurement of Cross-Field Electron Current in a Hall Thruster Due to Rotating Spoke Instabilities , 2011 .

[118]  Andrea Kodys,et al.  A Critical Review of the State-of-the-Art in the Performance of Applied-field Magnetoplasmadynamic Thrusters , 2005 .

[119]  Joachim V. R. Heberlein,et al.  New approaches in thermal plasma technology , 2002 .

[120]  A. Anders,et al.  A Theoretical Analysis of Vacuum Arc Thruster and Vacuum Arc Ion Thruster Performance , 2008, IEEE Transactions on Plasma Science.

[121]  K. Dannenmayer,et al.  Impact of discharge voltage on wall-losses in a Hall thruster , 2011 .

[122]  Maxwell G. Ballenger,et al.  Investigation of Plasma Detachment From a Magnetic Nozzle in the Plume of the VX-200 Magnetoplasma Thruster , 2015, IEEE Transactions on Plasma Science.

[123]  Hideyuki Horisawa,et al.  Very low-power arcjet testing , 2000 .

[124]  C. Charles,et al.  Performance improvement of a permanent magnet helicon plasma thruster , 2013 .

[126]  N. Hershkowitz Review of recent laboratory double layer experiments , 1985 .

[127]  Michael J. Patterson,et al.  Annular-Geometry Ion Engine: Concept, Development Status, and Preliminary Performance , 2012 .

[128]  E. B. Hooper Plasma detachment from a magnetic nozzle , 1991 .

[129]  I. Boyd,et al.  Modeling of anomalous electron mobility in Hall thrusters , 2006 .

[130]  Vladimir Kim,et al.  Dual-Mode Operation of Stationary Plasma Thrusters , 2006 .

[131]  Christine Charles,et al.  Measurement and modelling of a radiofrequency micro-thruster , 2012 .

[132]  L. Garrigues,et al.  Low frequency oscillations in a stationary plasma thruster , 1998 .

[133]  M. Merino,et al.  Two-dimensional supersonic plasma acceleration in a magnetic nozzle , 2010 .

[134]  A. Aanesland,et al.  Langmuir probe analysis of highly electronegative plasmas , 2013 .

[135]  John R. Brophy,et al.  Electric Propulsion for Solar System Exploration , 1998 .

[136]  Michele Coletti,et al.  Low Power Ablative Pulsed Plasma Thrusters , 2013 .

[137]  Robert P. Hoyt,et al.  Magnetic Nozzle Design for High-Power MPD Thrusters , 2005 .

[138]  R. Branam,et al.  Performance Evaluation of an Iodine-Vapor Hall Thruster , 2012 .

[139]  Hitoshi Kuninaka,et al.  Experimental Verification of the Nozzle Shape Optimization for Self-Field MPD Thruster , 2005 .

[140]  M. Merino,et al.  On plasma detachment in propulsive magnetic nozzles , 2011 .

[141]  D. Feili,et al.  Forty Years of Giessen EP-Activities and the Recent RIT-Microthruster Development , 2005 .

[142]  Jason Cassibry Comparison of Directly and Inductively Coupled Pulsed Electromagnetic Thrusters , 2008 .

[143]  Christine Charles,et al.  Plasmas for spacecraft propulsion , 2009 .

[144]  L. Garrigues,et al.  Modeling of an advanced concept of a double stage Hall effect thruster , 2008 .

[145]  S. Satori,et al.  Development and Demonstration of a Cathodeless Electron Cyclotron Resonance Ion Thruster , 1998 .

[146]  Henry Oman,et al.  Fundamentals of Electric Propulsion , 2006 .

[147]  Dean Richard Massey,et al.  Development of a direct evaporation bismuth Hall thruster , 2008 .

[148]  I. Mikellides,et al.  Conducting Wall Hall Thrusters , 2013, IEEE Transactions on Plasma Science.

[149]  C. Volkmar,et al.  Implementation and verification of a hybrid performance and impedance model of gridded radio-frequency ion thrusters , 2015 .

[150]  R. Wirz,et al.  Analytical Ion Thruster Discharge Performance Model , 2006 .

[151]  I. Mikellides,et al.  Magnetic Shielding of the Channel Walls in a Hall Plasma Accelerator , 2011 .

[152]  L. Garrigues,et al.  Electric propulsion: comparisons between different concepts , 2011 .

[153]  K. Makowski,et al.  Transit-time instability in Hall thrusters , 2005 .

[154]  Monika Auweter-Kurtz,et al.  High-Power Hydrogen Arcjet Thrusters , 1998 .

[155]  Hideki Nakashima,et al.  Development and Thrust Performance of a Microwave Discharge Hall Thruster , 2007 .

[156]  Roger M. Myers,et al.  Test facilities for high power electric propulsion , 1991 .

[157]  R. Schneider,et al.  The HEMPT Concept - A Survey on Theoretical Considerations and Experimental Evidences , 2011 .

[158]  E. Choueiri Plasma oscillations in Hall thrusters , 2001 .

[159]  Kurt A. Polzin,et al.  Ablative Z-Pinch Pulsed Plasma Thruster , 2000 .

[160]  J. Adam,et al.  Study of stationary plasma thrusters using two-dimensional fully kinetic simulations , 2004 .

[161]  S. Tsikata,et al.  Dispersion relations of electron density fluctuations in a Hall thruster plasma, observed by collective light scattering , 2009 .

[162]  Maxwell G. Ballenger,et al.  VASIMR ® VX-200 Performance Measurements and Helicon Throttle Tables Using Argon and Krypton , 2011 .

[163]  K. H. Groh,et al.  State of the art of radio‐frequency ion sources for space propulsiona) , 1994 .

[164]  Lyon B. King,et al.  Energetics of Propellant Options for High-Power Hall Thrusters , 2005 .

[165]  Roderick Boswell,et al.  Helicons-the past decade , 1997 .

[166]  A. Arefiev,et al.  Ambipolar acceleration of ions in a magnetic nozzle , 2007 .

[167]  E. Y. Choueiri,et al.  Quasi-Steady Magnetoplasmadynamic Thruster Performance Database , 2001 .

[168]  Edgar Y. Choueiri,et al.  Scaling of Thrust in Self-Field Magnetoplasmadynamic Thrusters , 1998 .

[169]  L. Garrigues Computational Study of Hall-Effect Thruster with Ambient Atmospheric Gas as Propellant , 2012 .

[170]  M. Martinez-Sanchez,et al.  Spacecraft Electric Propulsion—An Overview , 1998 .

[172]  Roger M. Myers,et al.  MPD thruster technology , 1991 .

[173]  Robert G. Jahn,et al.  Quasi-steady plasma acceleration. , 1969 .

[174]  F. Levinton,et al.  Ion acceleration in plasmas emerging from a helicon-heated magnetic-mirror device , 2003 .

[175]  Maher I. Boulos,et al.  Thermal Plasmas: Fundamentals and Applications , 1994 .

[176]  Denis Estublier,et al.  The SMART-1 Electric Propulsion Subsystem around the Moon: In Flight Experience , 2005 .

[177]  Alec D. Gallimore,et al.  Developmental Status of a 100-kW Class Laboratory Nested channel Hall Thruster , 2011 .

[178]  A. Gallimore,et al.  Performance and Probe Measurements of a Radio-Frequency Plasma Thruster , 2013 .

[179]  E. Ahedo,et al.  Theory of a stationary current-free double layer in a collisionless plasma. , 2009, Physical review letters.

[180]  William B. Stein,et al.  Performance Modeling of a Coaxial Radio-Frequency Gas-Discharge Microthruster , 2008 .

[181]  Alec D. Gallimore,et al.  Hall Thruster Cluster Operation with a Shared Cathode , 2007 .

[182]  Y. Arakawa,et al.  Performance Computation of a Low-Power Hydrogen Arcjet , 1999 .

[183]  L. Garrigues,et al.  The PEGASES Gridded Ion-Ion Thruster Performance and Predictions , 2015, IEEE Transactions on Plasma Science.

[184]  Dmytro Rafalskyi,et al.  Alternate extraction and acceleration of positive and negative ions from a gridded plasma source , 2014 .

[185]  N. Fisch,et al.  Parametric investigations of a nonconventional Hall thruster , 2001 .

[186]  Robert H. Frisbee,et al.  Advanced Space Propulsion for the 21st Century , 2003 .

[187]  S. Mazouffre,et al.  Development and experimental characterization of a wall-less Hall thruster , 2014 .

[188]  K. Makowski,et al.  Wall material effects in stationary plasma thrusters. II. Near-wall and in-wall conductivity , 2003 .

[189]  L. Garrigues,et al.  A two-dimensional (azimuthal-axial) particle-in-cell model of a Hall thruster , 2014 .

[190]  M. Dudeck,et al.  Wall material effects in stationary plasma thrusters. I. Parametric studies of an SPT-100 , 2003 .