Highly localized surface oxide thickening on polycrystalline silicon thin films during cyclic loading in humid environments

Abstract Previous studies on very high-cycle fatigue behavior of thin silicon (Si) films suggest a strong environmental dependence of the degradation mechanism, the precise nature of which is still the subject of debate. This is partly due to contradictory evidence on the presence of thick post-cycling surface oxides. In the present study, 2 μm thick polycrystalline Si structures subjected to fully reversed stresses at 40 kHz are used to investigate fatigue degradation in a harsh environment (80 °C, 90% relative humidity). Transmission electron microscopy (TEM) on vertical through-thickness slices reveals highly localized thick oxides (∼50 nm) in the area of large cyclic stress, but not in control specimens. Such localized oxides are likely to be missed with horizontal TEM slices, as done in previous studies. This study highlights the challenges in characterizing nanometer-scale phenomena with micron-scale specimens, and confirms the viability of the reaction-layer fatigue mechanism for the high-cycle/very high-cycle fatigue behavior of micron-scale silicon.

[1]  A. Argon,et al.  Simulation of plasticity in nanocrystalline silicon , 2007 .

[2]  O. Pierron,et al.  The Extended Range of Reaction-layer Fatigue Susceptibility of Polycrystalline Silicon Thin Films , 2005 .

[3]  Robert O. Ritchie,et al.  High-cycle Fatigue and Durability of Polycrystalline Silicon Thin ®lms in Ambient Air , 2022 .

[4]  Eric A. Stach,et al.  Mechanisms for Fatigue of Micron‐Scale Silicon Structural Films , 2006 .

[5]  R. Mullen,et al.  Electrostatically actuated failure of microfabricated polysilicon fracture mechanics specimens† , 1999, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[6]  C. L. Muhlstein,et al.  High-cycle fatigue of micron-scale polycrystalline silicon films: fracture mechanics analyses of the role of the silica/silicon interface , 2003 .

[7]  S. Mukherjee,et al.  MODAL ANALYSIS OF A CRACKED BEAM , 1997 .

[8]  Eric A. Stach,et al.  A reaction-layer mechanism for the delayed failure of micron-scale polycrystalline silicon structural films subjected to high-cycle fatigue loading , 2002 .

[9]  William N. Sharpe,et al.  Fatigue of polycrystalline silicon under long-term cyclic loading , 2003 .

[10]  R. Ballarini,et al.  Fatigue Failure in Polysilicon Not Due to Simple Stress Corrosion Cracking , 2002, Science.

[11]  Robert L. Mullen,et al.  Fracture toughness of polysilicon MEMS devices , 2000 .

[12]  J.-M. Stauffer Current capabilities of MEMS capacitive accelerometers in harsh environment , 2006, 2006 IEEE/ION Position, Location, And Navigation Symposium.

[13]  Eric A. Stach,et al.  Fatigue failure in thin-film polycrystalline silicon is due to subcritical cracking within the oxide layer , 2005 .

[14]  H. Kahn,et al.  Materials issues in MEMS , 1999 .

[15]  Walter D. Pilkey Peterson's Stress Concentration Factors , 1997 .

[16]  M. Payne,et al.  Stress-Driven Oxidation Chemistry of Wet Silicon Surfaces , 2008, 0904.2091.

[17]  Ming C. Wu,et al.  Thermal annealing in hydrogen for 3-D profile transformation on silicon-on-insulator and sidewall roughness reduction , 2006, Journal of Microelectromechanical Systems.

[18]  O. Pierron,et al.  The critical role of environment in fatigue damage accumulation in deep-reactive ion-etched single-crystal silicon structural films , 2006, Journal of Microelectromechanical Systems.

[19]  Eric A. Stach,et al.  Very high-cycle fatigue failure in micron-scale polycrystalline silicon films : Effects of environment and surface oxide thickness , 2007 .

[20]  Brad Lee Boyce,et al.  Galvanic corrosion induced degredation of tensile properties in micromachined polycrystalline silicon , 2007 .

[21]  Karl Meerbergen,et al.  The Lanczos method: evolution and application , 2005, Math. Comput..

[22]  Olivier N. Pierron,et al.  Galvanic effects in Si-based microelectromechanical systems: Thick oxide formation and its implications for fatigue reliability , 2005 .

[23]  Eric A. Stach,et al.  Mechanism of fatigue in micron-scale films of polycrystalline silicon for microelectromechanical systems , 2002 .

[24]  Eric A. Stach,et al.  Further considerations on the high-cycle fatigue of micron-scale polycrystalline silicon , 2008 .

[25]  Peter Gumbsch,et al.  High-cycle fatigue and strengthening in polycrystalline silicon , 2008 .

[26]  B. Boyce,et al.  Strength Distributions in Polycrystalline Silicon MEMS , 2007, Journal of Microelectromechanical Systems.

[27]  J. Beuth Cracking of thin bonded films in residual tension , 1992 .

[28]  R. Ritchie,et al.  Effect of post-release sidewall morphology on the fracture and fatigue properties of polycrystalline silicon structural films , 2008 .

[29]  Roberto Ballarini,et al.  Dynamic fatigue of silicon , 2004 .

[30]  T. Fett A cantilever effect for cracks with mismatching crack faces? , 1996 .

[31]  Dominique Collard,et al.  Influence of the Step Covering on Fatigue Phenomenon for Polycrystalline Silicon Micro-Electro-Mechanical-Systems (MEMS) : Instrumentation, Measurement, and Fabrication Technology , 2002 .

[32]  T. G. Brown,et al.  Harsh military environments and microelectromechanical (MEMS) devices , 2003, Proceedings of IEEE Sensors 2003 (IEEE Cat. No.03CH37498).

[33]  E. Irene Silicon oxidation studies: A revised model for thermal oxidation , 1983 .

[34]  R. Aigner,et al.  Fracture strength and fatigue of polysilicon determined by a novel thermal actuator [MEMS] , 2000 .

[35]  O. N. Pierron,et al.  The role of debris‐induced cantilever effects in cyclic fatigue of micron‐scale silicon films , 2007 .

[36]  J. Newman,et al.  Stress-intensity factor equations for cracks in three-dimensional finite bodies subjected to tension and bending loads , 1984 .

[37]  H. F. Helbig,et al.  A system for automatic electrical and optical characterization of microelectromechanical devices , 1999 .

[38]  Ioannis Chasiotis,et al.  Fracture Toughness and Subcritical Crack Growth in Polycrystalline Silicon , 2006 .

[39]  Stuart B. Brown,et al.  Subcritical crack growth in silicon MEMS , 1999 .

[40]  Olivier Millet,et al.  Reliability of polysilicon microstructures: in situ test benches , 2002, Microelectron. Reliab..

[41]  Roberto Ballarini,et al.  Mechanical fatigue of polysilicon: Effects of mean stress and stress amplitude , 2006 .

[42]  Jörg Bagdahn,et al.  Fatigue testing of polysilicon––a review , 2004 .

[43]  J. Connally,et al.  Slow Crack Growth in Single-Crystal Silicon , 1992, Science.

[44]  E. Irene New results on low-temperature thermal oxidation of silicon , 1987 .

[45]  Roberto Ballarini,et al.  Surface oxide effects on failure of polysilicon MEMS after cyclic and monotonic loading , 2008 .

[46]  J. Hung,et al.  Various Fatigue Testing of Polycrystalline Silicon Microcantilever Beam in Bending , 2008 .

[47]  Louis Komzsik The Lanczos method - evolution and application , 2003, Software, environments, tools.

[48]  Robert F. Cook,et al.  Strength and sharp contact fracture of silicon , 2006 .

[49]  O. Pierron,et al.  Notch Root Oxide Formation During Fatigue of Polycrystalline Silicon Structural Films , 2007, Journal of Microelectromechanical Systems.

[50]  H. Kahn,et al.  Anodic oxidation during MEMS processing of silicon and polysilicon: native oxides can be thicker than you think , 2005, Journal of Microelectromechanical Systems.

[51]  T. Kenny,et al.  Subcritical Crack Growth in Single-crystal Silicon Using Micromachined Specimens , 2002 .

[52]  Pranav Shrotriya,et al.  Surface topography evolution and fatigue fracture in polysilicon MEMS structures , 2003 .