Linkage Identification by Nonlinearity Check for Real-Coded Genetic Algorithms

Linkage identification is a technique to recognize decomposable or quasi-decomposable sub-problems. Accurate linkage identification improves GA’s search capability. We introduce a new linkage identification method for Real-Coded GAs called LINC-R (Linkage Identification by Nonlinearity Check for Real-Coded GAs). It tests nonlinearity by random perturbations on each locus in a real value domain. For the problem on which the proportion of nonlinear region in the domain is smaller, more perturbations are required to ensure LINC-R to detect nonlinearity successfully. If the proportion is known, the population size which ensures a certain success rate of LINC-R can be calculated. Computational experiments on benchmark problems showed that the GA with LINC-R outperforms conventional Real-Coded GAs and those with linkage identification by a correlation model.