Real-time assay for monitoring membrane association of lipid-binding domains

[1]  M. Kozlov,et al.  How Synaptotagmin Promotes Membrane Fusion , 2007, Science.

[2]  E. Chapman,et al.  Ca2+-triggered simultaneous membrane penetration of the tandem C2-domains of synaptotagmin I. , 2006, Biophysical journal.

[3]  Wonhwa Cho,et al.  Membrane binding and subcellular targeting of C2 domains. , 2006, Biochimica et biophysica acta.

[4]  J. Hurley,et al.  Membrane binding domains. , 2006, Biochimica et biophysica acta.

[5]  D. Cafiso,et al.  Position of synaptotagmin I at the membrane interface: cooperative interactions of tandem C2 domains. , 2006, Biochemistry.

[6]  Gregor Anderluh,et al.  Surface plasmon resonance in protein-membrane interactions. , 2006, Chemistry and physics of lipids.

[7]  T. Südhof,et al.  Close membrane-membrane proximity induced by Ca2+-dependent multivalent binding of synaptotagmin-1 to phospholipids , 2006, Nature Structural &Molecular Biology.

[8]  R. Colman,et al.  Subunit interface residues of glutathione S-transferase A1-1 that are important in the monomer-dimer equilibrium. , 2004, Biochemistry.

[9]  E. Chapman,et al.  The C2 domains of synaptotagmin--partners in exocytosis. , 2004, Trends in biochemical sciences.

[10]  E. Chapman,et al.  PIP2 increases the speed of response of synaptotagmin and steers its membrane-penetration activity toward the plasma membrane , 2004, Nature Structural &Molecular Biology.

[11]  M. Jackson,et al.  Mutations in the Effector Binding Loops in the C2A and C2B Domains of Synaptotagmin I Disrupt Exocytosis in a Nonadditive Manner* , 2003, Journal of Biological Chemistry.

[12]  E. Chapman,et al.  Visualization of synaptotagmin I oligomers assembled onto lipid monolayers , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[13]  E. Chapman,et al.  Application of fluorescent probes to study mechanics and dynamics of Ca2+-triggered synaptotagmin C2 domain-membrane interactions. , 2003, Methods in enzymology.

[14]  T. Südhof,et al.  Structure/Function Analysis of Ca2+ Binding to the C2A Domain of Synaptotagmin 1 , 2002, The Journal of Neuroscience.

[15]  Ian G. Mills,et al.  Curvature of clathrin-coated pits driven by epsin , 2002, Nature.

[16]  Konosuke Kumakura,et al.  Calmodulin and lipid binding to synaptobrevin regulates calcium‐dependent exocytosis , 2002, The EMBO journal.

[17]  B. Davletov,et al.  Vesicular restriction of synaptobrevin suggests a role for calcium in membrane fusion , 2002, Nature.

[18]  T. Südhof,et al.  Synaptotagmins form a hierarchy of exocytotic Ca2+ sensors with distinct Ca2+ affinities , 2002, The EMBO journal.

[19]  T. Südhof,et al.  Three-Dimensional Structure of the Synaptotagmin 1 C2B-Domain Synaptotagmin 1 as a Phospholipid Binding Machine , 2001, Neuron.

[20]  E. Chapman,et al.  Membrane-embedded Synaptotagmin Penetrates cis ortrans Target Membranes and Clusters via a Novel Mechanism* , 2000, The Journal of Biological Chemistry.

[21]  C. Lévêque,et al.  Ca2+-dependent regulation of synaptic SNARE complex assembly via a calmodulin- and phospholipid-binding domain of synaptobrevin. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[22]  Roger L. Williams,et al.  Calcium-dependent Membrane Penetration Is a Hallmark of the C2 Domain of Cytosolic Phospholipase A2 Whereas the C2A Domain of Synaptotagmin Binds Membranes Electrostatically* , 1998, The Journal of Biological Chemistry.

[23]  H. Pollard,et al.  Highly sensitive and stable phosphatidylserine liposome aggregation assay for annexins. , 1997, Analytical biochemistry.

[24]  J. Falke,et al.  The C2 domain calcium‐binding motif: Structural and functional diversity , 1996, Protein science : a publication of the Protein Society.

[25]  J. Rothman,et al.  Calcium-dependent switching of the specificity of phosphoinositide binding to synaptotagmin. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[26]  T. Südhof,et al.  Bipartite Ca2+-Binding Motif in C2 Domains of Synaptotagmin and Protein Kinase C , 1996, Science.

[27]  T. Südhof,et al.  Distinct Ca2+ and Sr2+ Binding Properties of Synaptotagmins , 1995, The Journal of Biological Chemistry.

[28]  T. Südhof,et al.  Distinct Ca and Sr Binding Properties of Synaptotagmins DEFINITION OF CANDIDATE Ca SENSORS FOR THE FAST AND SLOW COMPONENTS OF NEUROTRANSMITTER RELEASE* , 1995 .

[29]  T. Südhof,et al.  Synaptic vesicle membrane fusion complex: action of clostridial neurotoxins on assembly. , 1994, The EMBO journal.

[30]  T. Südhof,et al.  A single C2 domain from synaptotagmin I is sufficient for high affinity Ca2+/phospholipid binding. , 1993, The Journal of biological chemistry.

[31]  G J Kleywegt,et al.  Structure determination and refinement of human alpha class glutathione transferase A1-1, and a comparison with the Mu and Pi class enzymes. , 1993, Journal of molecular biology.

[32]  G. Nelsestuen,et al.  Protein kinase C interaction with calcium: a phospholipid-dependent process. , 1990, Biochemistry.

[33]  T. Südhof,et al.  Phospholipid binding by a synaptic vesicle protein homologous to the regulatory region of protein kinase C , 1990, Nature.

[34]  Y Nishizuka,et al.  The protein kinase C family: heterogeneity and its implications. , 1989, Annual review of biochemistry.

[35]  Y. Nishizuka,et al.  The molecular heterogeneity of protein kinase C and its implications for cellular regulation , 1988, Nature.

[36]  G. Nelsestuen,et al.  Association of protein kinase C with phospholipid vesicles. , 1987, Biochemistry.