A Low-Noise High-Gain Recycling Folded Cascode Operational Transconductance Amplifier Based on Gate Driven and Quasi-Floating Bulk Technique

Operational Transconductance Amplifier (OTA) is an important circuit block used in the design of filter, amplifiers and oscillators for various analog-mixed circuit systems. However, design of a low-noise, high-gain OTA with low-power consumption is a challenging task in CMOS technology owing to high-power requirements of OTA for emulating high gain. This paper represents the design of gate-driven quasi-floating bulk recycling folded cascode (GDQFB RFC) OTA which has been shown to provide low-noise operation, emulates high gain and draws very less power. The design utilizes the gate-driven quasi-floating bulk (GDQFB) technique on a recycling folded cascode structure, which enhances the transconductance of OTA and improves its performance. All the post-layout simulation results have been obtained in 0.18-[Formula: see text]m CMOS N-well technology using BSIM3V3 device models. The obtained results indicate very high gain of 100.4 dB, gain-bandwidth of 69[Formula: see text]kHz, phase margin of 51.9∘ with power consumption of 2.31[Formula: see text][Formula: see text]W from [Formula: see text][Formula: see text]V supply voltage. The input referred noise emulated by proposed OTA is 0.684, 0.21 and 0.0592[Formula: see text][Formula: see text]V/[Formula: see text]Hz @ 1[Formula: see text]Hz, 10[Formula: see text]Hz and 1[Formula: see text]kHz, respectively. The input common mode range and output voltage swing are found to be [Formula: see text] to 0.669[Formula: see text]V and [Formula: see text] to 0.610[Formula: see text]V, respectively. Corner simulations and Monte Carlo analysis have been performed to verify the robustness of the proposed OTA. The proposed OTA can be used in design of filters and amplifiers for bio-instruments, sensor applications, neural recording applications and human implants etc.