Homotopic residual correction processes

We present and analyze homotopic (continuation) residual correction algorithms for the computation of matrix inverses. For complex indefinite Hermitian input matrices, our homotopic methods substantially accelerate the known nonhomotopic algorithms. Unlike the nonhomotopic case our algorithms require no pre-estimation of the smallest singular value of an input matrix. Furthermore, we guarantee rapid convergence to the inverses of well-conditioned structured matrices even where no good initial approximation is available. In particular we yield the inverse of a well-conditioned n x n matrix with a structure of Toeplitz/Hankel type in O(n log 3 n) flops. For a large class of input matrices, our methods can be extended to computing numerically the generalized inverses. Our numerical experiments confirm the validity of our analysis and the efficiency of the presented algorithms for well-conditioned input matrices and furnished us with the proper values of the parameters that define our algorithms.

[1]  T. Kailath,et al.  Fast Parallel Algorithms for QR and Triangular Factorization , 1987 .

[2]  V. Pan Structured Matrices and Polynomials , 2001 .

[3]  Victor Y. Pan,et al.  Newton's Iteration for Inversion of Cauchy-Like and Other Structured Matrices , 1997, J. Complex..

[4]  V. Pan On computations with dense structured matrices , 1990 .

[5]  H. Keller,et al.  Analysis of Numerical Methods , 1969 .

[6]  Victor Y. Pan,et al.  Parallel solution of toeplitzlike linear systems , 1992, J. Complex..

[7]  Gene H. Golub,et al.  Matrix computations , 1983 .

[8]  Victor Y. Pan A Homotopic Residual Correction Process , 2000, NAA.

[9]  D. Faddeev,et al.  Computational methods of linear algebra , 1959 .

[10]  Beatrice Meini,et al.  Approximate displacement rank and applications , 2001 .

[11]  J. M Varah,et al.  Computational methods in linear algebra , 1984 .

[12]  Frank Hellinger,et al.  On the Bezoutian structure of the Moore-Penrose inverses of Hankel matrices , 1993 .

[13]  M. Morf,et al.  Displacement ranks of matrices and linear equations , 1979 .

[14]  Victor Y. Pan,et al.  Newton's iteration for the inversion of structured matrices , 2001 .

[15]  James R. Bunch,et al.  Stability of Methods for Solving Toeplitz Systems of Equations , 1985 .

[16]  Victor Y. Pan,et al.  TR-2002015: Residual Correction Algorithms for General and Structured Matrices , 2002 .

[17]  Victor Y. Pan TR-2004014: A Homotopic/Factorization Process for Toeplitz-like Matrices with Newton's/Conjugate Gradient Stages , 2004 .

[18]  Victor Y. Pan,et al.  Iterative inversion of structured matrices , 2004, Theor. Comput. Sci..

[19]  Victor Y. Pan Decreasing the displacement rank of a matrix , 1993 .

[20]  Victor Y. Pan,et al.  c ○ 2003 Society for Industrial and Applied Mathematics INVERSION OF DISPLACEMENT OPERATORS ∗ , 2022 .

[21]  Adi Ben-Israel,et al.  A note on an iterative method for generalized inversion of matrices , 1966 .

[22]  Victor Y. Pan,et al.  An Improved Newton Iteration for the Generalized Inverse of a Matrix, with Applications , 1991, SIAM J. Sci. Comput..

[23]  V. Pan,et al.  Structured matrices and newton's iteration: unified approach , 2000 .

[24]  Victor Y. Pan,et al.  Newton's iteration for structured matrices , 1999 .

[25]  Frank Hellinger,et al.  Moore-Penrose Inversion of Square Toeplitz Matrices , 1994 .

[26]  B. Parlett The Symmetric Eigenvalue Problem , 1981 .

[27]  V. Pan Structured Matrices and Polynomials: Unified Superfast Algorithms , 2001 .

[28]  Victor Y. Pan,et al.  Modular Arithmetic for Linear Algebra Computations in the Real Field , 1998, J. Symb. Comput..

[29]  G. Stewart,et al.  On the Numerical Properties of an Iterative Method for Computing the Moore–Penrose Generalized Inverse , 1974 .

[30]  Thomas Kailath,et al.  Fast reliable algorithms for matrices with structure , 1999 .