Visual ecology of Indian carpenter bees II: adaptations of eyes and ocelli to nocturnal and diurnal lifestyles

Most bees are diurnal, with behaviour that is largely visually mediated, but several groups have made evolutionary shifts to nocturnality, despite having apposition compound eyes unsuited to vision in dim light. We compared the anatomy and optics of the apposition eyes and the ocelli of the nocturnal carpenter bee, Xylocopa tranquebarica, with two sympatric species, the strictly diurnal X. leucothorax and the occasionally crepuscular X. tenuiscapa. The ocelli of the nocturnal X. tranquebarica are unusually large (diameter ca. 1 mm) and poorly focussed. Moreover, their apposition eyes show specific visual adaptations for vision in dim light, including large size, large facets and very wide rhabdoms, which together make these eyes 9 times more sensitive than those of X. tenuiscapa and 27 times more sensitive than those of X. leucothorax. These differences in optical sensitivity are surprisingly small considering that X. tranquebarica can fly on moonless nights when background luminance is as low as 10−5 cd m−2, implying that this bee must employ additional visual strategies to forage and find its way back to the nest. These strategies may include photoreceptors with longer integration times and higher contrast gains as well as higher neural summation mechanisms for increasing visual reliability in dim light.

[1]  Kuno Kirschfeld,et al.  The Absolute Sensitivity of Lens and Compound Eyes , 1974, Zeitschrift fur Naturforschung. Section C, Biosciences.

[2]  Eric J. Warrant,et al.  Visual summation in night-flying sweat bees: A theoretical study , 2006, Vision Research.

[3]  Birgit Greiner Visual adaptations in the night‐active wasp Apoica pallens , 2006, The Journal of comparative neurology.

[4]  R. Borges,et al.  Nocturnal Pollination by the Carpenter Bee Xylocopa tenuiscapa (Apidae) and the Effect of Floral Display on Fruit Set of Heterophragma quadriloculare (Bignoniaceae) in India1 , 2001 .

[5]  E. Warrant Seeing better at night: life style, eye design and the optimum strategy of spatial and temporal summation , 1999, Vision Research.

[6]  Waveguide modes and pupil action in the eyes of butterflies , 1990, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[7]  D. Roubik,et al.  Ecology and natural history of tropical bees: Extant families, subfamilies, tribes, genera, and subgenera of the Apoidea: a partial checklist , 1989 .

[8]  Eric J. Warrant,et al.  Absorption of white light in photoreceptors , 1998, Vision Research.

[9]  M. Land,et al.  The physiological optics of Dinopis subrufus L. Koch: A fish-lens in a spider , 1977, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[10]  M. Wiener,et al.  Animal eyes. , 1957, The American orthoptic journal.

[11]  A. Straw,et al.  A `bright zone' in male hoverfly (Eristalis tenax) eyes and associated faster motion detection and increased contrast sensitivity , 2006, Journal of Experimental Biology.

[12]  Eric J. Warrant,et al.  Nocturnal Vision and Landmark Orientation in a Tropical Halictid Bee , 2004, Current Biology.

[13]  Michael F. Land,et al.  Optics and Vision in Invertebrates , 1981 .

[14]  E. Warrant,et al.  Visual sensitivity in the crepuscular owl butterfly Caligo memnon and the diurnal blue morpho Morpho peleides: a clue to explain the evolution of nocturnal apposition eyes? , 2008, Journal of Experimental Biology.

[15]  Eye structure correlates with distinct foraging-bout timing in primitive ants , 2007, Current Biology.

[16]  Visual field structure in the Empress Leilia, Asterocampa leilia (Lepidoptera, Nymphalidae): dimensions and regional variation in acuity , 2002, Journal of Comparative Physiology A.

[17]  M. Sanders Handbook of Sensory Physiology , 1975 .

[18]  M. F. Land,et al.  Maps of the acute zones of fly eyes , 1985, Journal of Comparative Physiology A.

[19]  Eric J Warrant,et al.  Seeing in the dark: vision and visual behaviour in nocturnal bees and wasps , 2008, Journal of Experimental Biology.

[20]  Eric J. Warrant,et al.  Light intensity limits foraging activity in nocturnal and crepuscular bees , 2006 .

[21]  W. Kerfoot Correlation between Ocellar Size and the Foraging Activities of Bees (Hymenoptera; Apoidea) , 1967, The American Naturalist.

[22]  Allan W. Snyder,et al.  Acuity of compound eyes: Physical limitations and design , 2004, Journal of comparative physiology.

[23]  A. Snyder Physics of Vision in Compound Eyes , 1979 .

[24]  D. Stavenga,et al.  Simple exponential functions describing the absorbance bands of visual pigment spectra , 1993, Vision Research.

[25]  E. Warrant,et al.  Visual acuity and sensitivity increase allometrically with body size in butterflies. , 2009, Arthropod structure & development.

[26]  M. Land Visual acuity in insects. , 1997, Annual review of entomology.

[27]  H. Homann Zum Problem der Ocellenfunktion bei den Insekten , 1924, Zeitschrift für vergleichende Physiologie.

[28]  D. Stavenga Angular and spectral sensitivity of fly photoreceptors. I. Integrated facet lens and rhabdomere optics , 2002, Journal of Comparative Physiology A.

[29]  R. Jander,et al.  Allometry and resolution of bee eyes (Apoidea). , 2002, Arthropod structure & development.

[30]  J. H. van Hateren,et al.  The bright zone, a specialized dorsal eye region in the male blowflyChrysomyia megacephala , 1989, Journal of Comparative Physiology A.

[31]  W. Wcislo,et al.  Ocellar optics in nocturnal and diurnal bees and wasps. , 2006, Arthropod structure & development.

[32]  Victor H. Gonzalez,et al.  The evolution of nocturnal behaviour in sweat bees, Megalopta genalis and M. ecuadoria (Hymenoptera: Halictidae): an escape from competitors and enemies? , 2004 .

[33]  Almut Kelber,et al.  Nocturnal bees learn landmark colours in starlight , 2008, Current Biology.

[34]  Eric J. Warrant,et al.  Anatomical and physiological evidence for polarisation vision in the nocturnal bee Megalopta genalis , 2007, Journal of Comparative Physiology A.

[35]  G A Horridge,et al.  The separation of visual axes in apposition compound eyes. , 1978, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[36]  Eric J. Warrant,et al.  Visual Reliability and Information Rate in the Retina of a Nocturnal Bee , 2008, Current Biology.

[37]  R. Wehner Spatial Vision in Arthropods , 1981 .

[38]  Eric J. Warrant,et al.  Retinal and optical adaptations for nocturnal vision in the halictid bee Megalopta genalis , 2004, Cell and Tissue Research.

[39]  Ursula Menzi,et al.  Visual adaptation in nocturnal and diurnal ants , 2004, Journal of Comparative Physiology A.

[40]  Eric Warrant,et al.  Vision in the dimmest habitats on Earth , 2004, Journal of Comparative Physiology A.

[41]  R. B. Srygley,et al.  Lekking in Neotropical Owl Butterflies, Caligo illioneus and C. oileus (Lepidoptera: Brassolinae) , 2004, Journal of Insect Behavior.

[42]  Eric J. Warrant,et al.  Visual ecology of Indian carpenter bees I: Light intensities and flight activity , 2007, Journal of Comparative Physiology A.

[43]  W. Wellington,et al.  Bumblebee Ocelli and Navigation at Dusk , 1974, Science.