Semiconductor devices for entangled photon pair generation: a review

Entanglement is one of the most fascinating properties of quantum mechanical systems; when two particles are entangled the measurement of the properties of one of the two allows the properties of the other to be instantaneously known, whatever the distance separating them. In parallel with fundamental research on the foundations of quantum mechanics performed on complex experimental set-ups, we assist today with bourgeoning of quantum information technologies bound to exploit entanglement for a large variety of applications such as secure communications, metrology and computation. Among the different physical systems under investigation, those involving photonic components are likely to play a central role and in this context semiconductor materials exhibit a huge potential in terms of integration of several quantum components in miniature chips. In this article we review the recent progress in the development of semiconductor devices emitting entangled photons. We will present the physical processes allowing the generation of entanglement and the tools to characterize it; we will give an overview of major recent results of the last few years and highlight perspectives for future developments.

[1]  I Favero,et al.  Second-harmonic generation in AlGaAs microdisks in the telecom range. , 2014, Optics letters.

[2]  J. Gerard,et al.  Quantum optics with quantum dots Towards semiconductor sources of quantum light for quantum information processing , 2014 .

[3]  A. Eckstein,et al.  Direct bell states generation on a III-V semiconductor chip at room temperature , 2013, CLEO: 2013.

[4]  P. Grangier,et al.  Experimental Tests of Realistic Local Theories via Bell's Theorem , 1981 .

[5]  J. Nagle,et al.  LETTER TO THE EDITOR: A third-order-mode laser diode for quantum communication , 2004 .

[6]  S. J. B. Yoo,et al.  Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding , 1996 .

[7]  Pérès Separability Criterion for Density Matrices. , 1996, Physical review letters.

[8]  Jian-Wei Pan,et al.  On-demand semiconductor single-photon source with near-unity indistinguishability. , 2012, Nature nanotechnology.

[9]  A. EINsTEIN,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete ' ? , 2011 .

[10]  Anton Zeilinger,et al.  General properties of lossless beam splitters in interferometry , 1981 .

[11]  P. Pathak,et al.  Comment on "Entanglement on demand through time reordering". , 2009, Physical review letters.

[12]  Christian Schneider,et al.  Multi-photon boson-sampling machines beating early classical computers , 2016 .

[13]  E. D. Valle Distilling one, two and entangled pairs of photons from a quantum dot with cavity QED effects and spectral filtering , 2012, 1210.5272.

[14]  S. Walborn,et al.  Toolbox for continuous-variable entanglement production and measurement using spontaneous parametric down-conversion , 2015, 1506.06077.

[15]  A J Shields,et al.  Indistinguishable entangled photons generated by a light-emitting diode. , 2012, Physical review letters.

[16]  R. M. Stevenson,et al.  Electric-field-induced coherent coupling of the exciton states in a single quantum dot , 2010, 1203.5909.

[17]  M M Fejer,et al.  Measurement of the nonlinear coefficient of orientation-patterned GaAs and demonstration of highly efficient second-harmonic generation. , 2002, Optics letters.

[18]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[19]  O. Schmidt,et al.  Universal recovery of the energy-level degeneracy of bright excitons in InGaAs quantum dots without a structure symmetry. , 2012, Physical review letters.

[20]  P. Michler,et al.  Influence of the dark exciton state on the optical and quantum optical properties of single quantum dots. , 2008, Physical review letters.

[21]  Shih,et al.  New type of Einstein-Podolsky-Rosen-Bohm experiment using pairs of light quanta produced by optical parametric down conversion. , 1988, Physical review letters.

[22]  D. Ritchie,et al.  Magnetic-field-induced reduction of the exciton polarization splitting in InAs quantum dots , 2006, quant-ph/0601199.

[23]  A. C. Bryce,et al.  Quasi phase matching in GaAs--AlAs superlattice waveguides through bandgap tuning by use of quantum-well intermixing. , 2000, Optics letters.

[24]  Andrew G. White,et al.  Nonmaximally Entangled States: Production, Characterization, and Utilization , 1999, quant-ph/9908081.

[25]  Andrew G. White,et al.  Measurement of qubits , 2001, quant-ph/0103121.

[26]  A. Golnik,et al.  Distributed Bragg reflectors obtained by combining Se and Te compounds: Influence on the luminescence from CdTe quantum dots , 2016 .

[27]  E. Schrödinger Discussion of Probability Relations between Separated Systems , 1935, Mathematical Proceedings of the Cambridge Philosophical Society.

[28]  Mandel,et al.  Observation of nonclassical effects in the interference of two photons. , 1987, Physical review letters.

[29]  C. Simon,et al.  Creating single time-bin-entangled photon pairs. , 2004, Physical review letters.

[30]  Valerio Scarani,et al.  Does entanglement depend on the timing of the impacts at the beam splitters , 1997 .

[31]  A. Zunger,et al.  Theoretical interpretation of the experimental electronic structure of lens shaped, self-assembled InAs/GaAs quantum dots , 2000, cond-mat/0003055.

[32]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[33]  R. Jozsa Fidelity for Mixed Quantum States , 1994 .

[34]  S. J. B. Yoo,et al.  Quasi‐phase‐matched second‐harmonic generation in AlGaAs waveguides with periodic domain inversion achieved by wafer‐bonding , 1995 .

[35]  Dirk Reuter,et al.  Control of fine-structure splitting and biexciton binding in In x Ga 1 − x As quantum dots by annealing , 2004 .

[36]  A. Knorr,et al.  Optical feedback-enhanced photon entanglement from a biexciton cascade. , 2014, Physical review letters.

[37]  Erik Woodhead,et al.  Creating and manipulating entangled optical qubits in the frequency domain , 2014, 1403.0805.

[38]  Sabine Wollmann,et al.  Efficient and pure femtosecond-pulse-length source of polarization-entangled photons. , 2016, Optics express.

[39]  M. Lipson,et al.  Generation of correlated photons in nanoscale silicon waveguides. , 2006, Optics express.

[40]  Paul Voisin,et al.  Influence of an in-plane electric field on exciton fine structure in InAs-GaAs self-assembled quantum dots , 2005 .

[41]  Ivan Favero,et al.  Nearly-degenerate three-wave mixing at 1.55 μm in oxidized AlGaAs waveguides. , 2011, Optics express.

[42]  Isabelle Sagnes,et al.  Ultrabright source of entangled photon pairs , 2010, Nature.

[43]  E. Costard,et al.  Enhanced Spontaneous Emission by Quantum Boxes in a Monolithic Optical Microcavity , 1998 .

[44]  A. E. Wetsel,et al.  Observation of discrete electronic states in a zero-dimensional semiconductor nanostructure. , 1988, Physical review letters.

[45]  Rob Thew,et al.  Provably secure and practical quantum key distribution over 307 km of optical fibre , 2014, Nature Photonics.

[46]  A. Gulinatti,et al.  Violation of Bell's inequality with a quantum dot in a tapered nanowire waveguide , 2015 .

[47]  Franson,et al.  Bell inequality for position and time. , 1989, Physical review letters.

[48]  Jian-Wei Pan,et al.  Indistinguishable tunable single photons emitted by spin-flip Raman transitions in InGaAs quantum dots. , 2013, Physical review letters.

[49]  Adeline Orieux,et al.  Recent advances on integrated quantum communications , 2016, 1606.07346.

[50]  Lindberg,et al.  Biexcitons in semiconductor quantum dots. , 1990, Physical review letters.

[51]  Hong,et al.  Measurement of subpicosecond time intervals between two photons by interference. , 1987, Physical review letters.

[52]  E. Togan,et al.  Observation of entanglement between a quantum dot spin and a single photon , 2012, Nature.

[53]  P. Yeh,et al.  Bragg reflection waveguides , 1976 .

[54]  A. Lemaître,et al.  Two-photon interference with a semiconductor integrated source at room temperature. , 2010, Optics express.

[55]  Hiroki Takesue,et al.  Entanglement generation using silicon wire waveguide , 2007, 2011 IEEE Photonics Society Summer Topical Meeting Series.

[56]  Ivan Favero,et al.  Integrated AlGaAs source of highly indistinguishable and energy-time entangled photons , 2015, 1507.05558.

[57]  I. Sagnes,et al.  Near-optimal single-photon sources in the solid state , 2015, Nature Photonics.

[58]  C. M. Natarajan,et al.  On-chip quantum interference between silicon photon-pair sources , 2013, Nature Photonics.

[59]  Li Qian,et al.  High-visibility two-photon interference of frequency-time entangled photons generated in a quasi-phase-matched AlGaAs waveguide. , 2014, Optics letters.

[60]  Ian Farrer,et al.  Two-photon interference of the emission from electrically tunable remote quantum dots , 2010 .

[61]  H. Kamada,et al.  Exciton Rabi oscillation in a single quantum dot. , 2001, Physical review letters.

[62]  Christian Schneider,et al.  Near-Transform-Limited Single Photons from an Efficient Solid-State Quantum Emitter. , 2016, Physical review letters.

[63]  D. Gershoni,et al.  Entanglement on demand through time reordering , 2007, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[64]  S. Schumacher,et al.  Cavity-assisted emission of polarization-entangled photons from biexcitons in quantum dots with fine-structure splitting. , 2012, Optics express.

[65]  F. Laussy,et al.  Two-photon spectra of quantum emitters , 2012, 1211.5592.

[66]  A. Zeilinger,et al.  Significant-Loophole-Free Test of Bell's Theorem with Entangled Photons. , 2015, Physical review letters.

[67]  Taehyun Kim,et al.  Phase-stable source of polarization-entangled photons using a polarization Sagnac interferometer , 2006, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.

[68]  F. Troiani,et al.  Entangled photon pairs from a quantum-dot cascade decay: The effect of time reordering , 2008, 0805.1790.

[69]  Oliver G. Schmidt,et al.  Atomic Clouds as Spectrally-Selective and Tunable Delay Lines for Single Photons from Quantum Dots , 2015 .

[70]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[71]  Joshua Nunn,et al.  Quantum memories: emerging applications and recent advances , 2015, Journal of modern optics.

[72]  G. Weihs,et al.  Polarization entangled photons from quantum dots embedded in nanowires. , 2014, Nano letters.

[73]  J P Torres,et al.  Generation of polarization-entangled photon pairs in a Bragg reflection waveguide. , 2013, Optics express.

[74]  L. Becouarn,et al.  Optical parametric oscillation in quasi-phase-matched GaAs , 2004, Conference on Lasers and Electro-Optics, 2004. (CLEO)..

[75]  Konrad Lehnert,et al.  Quantum-Enhanced Measurements: Beating the Standard Quantum Limit , 2004 .

[76]  H. Weinfurter,et al.  Event-Ready Bell Test Using Entangled Atoms Simultaneously Closing Detection and Locality Loopholes. , 2016, Physical review letters.

[77]  Robert Keil,et al.  Wavelength-tunable entangled photons from silicon-integrated III–V quantum dots , 2016, Nature Communications.

[78]  S. Gulde,et al.  Quantum nature of a strongly coupled single quantum dot–cavity system , 2007, Nature.

[79]  A. Zunger,et al.  Pseudopotential calculation of the excitonic fine structure of million-atom self-assembledIn1−xGaxAs/GaAsquantum dots , 2003 .

[80]  O. Schmidt,et al.  Highly entangled photons from hybrid piezoelectric-semiconductor quantum dot devices. , 2014, Nano letters.

[81]  O. Schmidt,et al.  Experimental methods of post-growth tuning of the excitonic fine structure splitting in semiconductor quantum dots , 2012, Nanoscale Research Letters.

[82]  M. S. Skolnick,et al.  Interfacing spins in an InGaAs quantum dot to a semiconductor waveguide circuit using emitted photons. , 2013, Physical review letters.

[83]  Yasuhiko Arakawa,et al.  Spontaneous two-photon emission from a single quantum dot. , 2011, Physical review letters.

[84]  G. Agrawal,et al.  Silicon waveguides for creating quantum-correlated photon pairs. , 2006, Optics letters.

[85]  A. R. Sugg,et al.  Hydrolyzation oxidation of AlxGa1−xAs‐AlAs‐GaAs quantum well heterostructures and superlattices , 1990 .

[86]  O. Schmidt,et al.  Triggered polarization-entangled photon pairs from a single quantum dot up to 30 K , 2007 .

[87]  O. Schmidt,et al.  Highly indistinguishable and strongly entangled photons from symmetric GaAs quantum dots , 2016, Nature Communications.

[88]  Ivan Favero,et al.  Near-infrared optical parametric oscillator in a III-V semiconductor waveguide , 2013 .

[89]  I. Suemune,et al.  Symmetric quantum dots as efficient sources of highly entangled photons: Violation of Bell's inequality without spectral and temporal filtering , 2013, 1302.6389.

[90]  Anton Zeilinger,et al.  Quantum (Un)speakables: From Bell to Quantum Information , 2010 .

[91]  A. Lemaître,et al.  Efficient parametric generation of counterpropagating two-photon states , 2011 .

[92]  Peter Michler,et al.  Controlling quantum dot emission by integration of semiconductor nanomembranes onto piezoelectric actuators , 2012 .

[93]  Isabelle Sagnes,et al.  A quantum dot based bright source of entangled photon pairs operating at 53 K , 2010 .

[94]  A. Helmy,et al.  Phase matching using Bragg reflection waveguides for monolithic nonlinear optics applications. , 2006, Optics express.

[95]  Y. H. Chen,et al.  Tuning the exciton binding energies in single self-assembled InGaAs/GaAs quantum dots by piezoelectric-induced biaxial stress. , 2010, Physical review letters.

[96]  I. V. Mitchell,et al.  Quasi-phase matched second-harmonic generation in an AlxGa1−xAs asymmetric quantum-well waveguide using ion-implantation-enhanced intermixing , 2000 .

[97]  Dan Dalacu,et al.  Nanowire waveguides launching single photons in a Gaussian mode for ideal fiber coupling. , 2014, Nano letters.

[98]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[99]  M. Calligaro,et al.  Continuous-wave second-harmonic generation in modal phase matched semiconductor waveguides , 2004 .

[100]  F Schmidt,et al.  Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography , 2015, Nature Communications.

[101]  A. Sergienko,et al.  High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits , 2011, Nature communications.

[102]  I. Favero,et al.  Polarization-entanglement generation and control in a counterpropagating phase-matching geometry , 2014 .

[103]  Dan Dalacu,et al.  Observation of strongly entangled photon pairs from a nanowire quantum dot , 2014, Nature Communications.

[104]  D. Hutchings,et al.  Quasi-phase-matched second-harmonic generation in a GaAs/AlAs superlattice waveguide by ion-implantation-induced intermixing. , 2003, Optics letters.

[105]  Christian Schneider,et al.  Deterministic and robust generation of single photons from a single quantum dot with 99.5% indistinguishability using adiabatic rapid passage. , 2014, Nano letters.

[106]  Masaya Notomi,et al.  Entangled photons from on-chip slow light , 2014, Scientific Reports.

[107]  N. Harris,et al.  Integrated Source of Spectrally Filtered Correlated Photons for Large-Scale Quantum Photonic Systems , 2014, 1409.8215.

[108]  P. Petroff,et al.  A quantum dot single-photon turnstile device. , 2000, Science.

[109]  H Zbinden,et al.  Semiconductor waveguide source of counterpropagating twin photons. , 2006, Physical review letters.

[110]  John E. Sipe,et al.  High‐resolution spectral characterization of two photon states via classical measurements , 2014 .

[111]  E. Togan,et al.  Quantum teleportation from a propagating photon to a solid-state spin qubit , 2013, Nature Communications.

[112]  W. Wootters,et al.  Distributed Entanglement , 1999, quant-ph/9907047.

[113]  Frederik F. Floether,et al.  Cavity-enhanced coherent light scattering from a quantum dot , 2015, Science Advances.

[114]  M. Calligaro,et al.  Second-harmonic generation through optimized modal phase matching in semiconductor waveguides , 2003 .

[115]  Stephen J. Pearton,et al.  Optically detected carrier confinement to one and zero dimension in GaAs quantum well wires and boxes , 1986 .

[116]  Marco Barbieri,et al.  Polarization-momentum hyperentangled states : Realization and characterization , 2005 .

[117]  D. Ritchie,et al.  An entangled-light-emitting diode , 2010, Nature.

[118]  Thomas Jennewein,et al.  A wavelength-tunable fiber-coupled source of narrowband entangled photons. , 2007, Optics express.

[119]  J. Rarity,et al.  Photonic quantum technologies , 2009, 1003.3928.

[120]  A. Gocalinska,et al.  Selective carrier injection into patterned arrays of pyramidal quantum dots for entangled photon light-emitting diodes , 2016, 1707.06190.

[121]  O. Schmidt,et al.  Ultra-small excitonic fine structure splitting in highly symmetric quantum dots on GaAs (001) substrate , 2013 .

[122]  E. Knill,et al.  A strong loophole-free test of local realism , 2015, 2016 Conference on Lasers and Electro-Optics (CLEO).

[123]  L. J. Sham,et al.  Demonstration of quantum entanglement between a single electron spin confined to an InAs quantum dot and a photon. , 2012, Physical review letters.

[124]  Bahaa E. A. Saleh,et al.  Generation of polarization-entangled photon pairs with arbitrary joint spectrum , 2004 .

[125]  Emanuele Pelucchi,et al.  Towards quantum-dot arrays of entangled photon emitters , 2013, 1402.1709.

[126]  A. Shimony,et al.  Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .

[127]  G. Bester,et al.  Nanowire quantum dots as an ideal source of entangled photon pairs. , 2009, Physical review letters.

[128]  O. Schmidt,et al.  Strain-induced anticrossing of bright exciton levels in single self-assembled GaAs/AlxGa1-xAs and InxGa1-xAs/GaAs quantum dots , 2011 .

[129]  P. Humphreys,et al.  Quantum enhanced multiple phase estimation. , 2013, Physical review letters.

[130]  P. Michler,et al.  On-demand generation of indistinguishable polarization-entangled photon pairs , 2013, 1308.4257.

[131]  M. Żukowski Bell theorem involving all settings of measuring apparatus , 1993 .

[132]  E. Purcell Spontaneous Emission Probabilities at Radio Frequencies , 1995 .

[133]  J. Cirac,et al.  Long-distance quantum communication with atomic ensembles and linear optics , 2001, Nature.

[134]  D. Ritchie,et al.  Improved fidelity of triggered entangled photons from single quantum dots , 2006, quant-ph/0601187.

[135]  Philippe Emplit,et al.  Frequency Bin Entangled Photons , 2009, 0910.1325.

[136]  Belgium,et al.  Maximal entanglement versus entropy for mixed quantum states , 2002, quant-ph/0208138.

[137]  Jian-Wei Pan,et al.  On-Demand Single Photons with High Extraction Efficiency and Near-Unity Indistinguishability from a Resonantly Driven Quantum Dot in a Micropillar. , 2016, Physical review letters.

[138]  G. Vidal,et al.  Computable measure of entanglement , 2001, quant-ph/0102117.

[139]  O. Schmidt,et al.  Corrigendum: High yield and ultrafast sources of electrically triggered entangled-photon pairs based on strain-tunable quantum dots , 2016, Nature Communications.

[140]  A. Forchel,et al.  Spectroscopic study of dark excitons in In x Ga 1-x As self-assembled quantum dots by a magnetic-field-induced symmetry breaking , 2000 .

[141]  Paulina S. Kuo,et al.  Second-harmonic generation using -quasi-phasematching in a GaAs whispering-gallery-mode microcavity , 2014, Nature Communications.

[142]  E. Rafailov,et al.  Second-harmonic generation from a first-order quasi-phase-matched GaAs/AlGaAs waveguide crystal. , 2001, Optics letters.

[143]  S. Massar,et al.  Silicon-on-insulator integrated source of polarization-entangled photons. , 2013, Optics letters.

[144]  Eleni Diamanti,et al.  Multi-user quantum key distribution with entangled photons from an AlGaAs chip , 2016, 1607.01693.

[145]  Makoto Ohashi,et al.  Determination of quadratic nonlinear optical coefficient of AlxGa1−xAs system by the method of reflected second harmonics , 1993 .

[146]  J. Martín-Sánchez,et al.  Wavelength-tunable sources of entangled photons interfaced with atomic vapours , 2016, Nature Communications.

[147]  Juan Miguel Arrazola,et al.  Quantum communication with coherent states and linear optics , 2014, 1406.7189.

[148]  O. Schmidt,et al.  Independent control of exciton and biexciton energies in single quantum dots via electroelastic fields , 2013 .

[149]  Andrew M. Childs Secure assisted quantum computation , 2001, Quantum Inf. Comput..

[150]  H. Weinfurter,et al.  Experimental Entanglement Swapping: Entangling Photons That Never Interacted , 1998 .

[151]  Randall C. Thompson,et al.  Experimental Test of Local Hidden-Variable Theories , 1976 .

[152]  W. Munro,et al.  A monolithically integrated polarization entangled photon pair source on a silicon chip , 2012, Scientific Reports.

[153]  Holleman,et al.  Two-photon Rabi oscillations. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[154]  H. Ohno,et al.  Vertical electric field tuning of the exciton fine structure splitting and photon correlation measurements of GaAs quantum dot , 2010 .

[155]  Jean-Michel Gérard,et al.  Quantum Cascade of Photons in Semiconductor Quantum Dots , 2001 .

[156]  Carlo Sirtori,et al.  Electrically injected photon-pair source at room temperature. , 2013, Physical review letters.

[157]  Benson,et al.  Regulated and entangled photons from a single quantum Dot , 2000, Physical review letters.

[158]  Elizabeth Gibney,et al.  Chinese satellite is one giant step for the quantum internet , 2016, Nature.

[159]  Martin B. Plenio,et al.  An introduction to entanglement measures , 2005, Quantum Inf. Comput..

[160]  V. Scarani,et al.  The security of practical quantum key distribution , 2008, 0802.4155.

[161]  N. Gisin,et al.  From Bell's theorem to secure quantum key distribution. , 2005, Physical review letters.

[162]  Shih,et al.  New high-intensity source of polarization-entangled photon pairs. , 1995, Physical review letters.

[163]  N. Gisin,et al.  Pulsed Energy-Time Entangled Twin-Photon Source for Quantum Communication , 1999 .

[164]  Hiroshi Fukuda,et al.  Generation of high-purity entangled photon pairs using silicon wire waveguide. , 2008, Optics express.

[165]  Vladan Mlinar,et al.  Effect of Atomic-Scale Randomness on the Optical Polarization of Semiconductor Quantum Dots , 2009 .

[166]  I. Sagnes,et al.  Bright solid-state sources of indistinguishable single photons , 2013, Nature Communications.

[167]  K. Jöns,et al.  Monolithic on-chip integration of semiconductor waveguides, beamsplitters and single-photon sources , 2014, 1403.7174.

[168]  Hiroshi Fukuda,et al.  Indistinguishable photon pair generation using two independent silicon wire waveguides , 2011 .

[169]  Christian Schneider,et al.  Quantum-dot spin–photon entanglement via frequency downconversion to telecom wavelength , 2012, Nature.

[170]  Barry M. Holmes,et al.  Recent advances in phase matching of second‐order nonlinearities in monolithic semiconductor waveguides , 2011 .

[171]  Brunner,et al.  Sharp-line photoluminescence and two-photon absorption of zero-dimensional biexcitons in a GaAs/AlGaAs structure. , 1994, Physical review letters.

[172]  M. Horne,et al.  Experimental Consequences of Objective Local Theories , 1974 .

[173]  W. Mckinnon,et al.  Voltage Induced Hidden Symmetry and Photon Entanglement Generation in a Single, Site-Selected Quantum Dot , 2007, 0706.1075.

[174]  Davide Castelvecchi,et al.  Quantum computers ready to leap out of the lab in 2017 , 2017, Nature.

[175]  Marijn A. M. Versteegh,et al.  Single pairs of time-bin-entangled photons , 2015, 1507.01876.

[176]  A. A. Gorbunov,et al.  Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots , 2002 .

[177]  Rosencher,et al.  Model system for optical nonlinearities: Asymmetric quantum wells. , 1991, Physical review. B, Condensed matter.

[178]  Barry M. Holmes,et al.  Continuous-wave quasi-phase-matched waveguide correlated photon pair source on a III–V chip , 2013 .

[179]  B. Sanders,et al.  Quantum encodings in spin systems and harmonic oscillators , 2001, quant-ph/0109066.

[180]  P. Pathak,et al.  Coherent generation of time-bin entangled photon pairs using the biexciton cascade and cavity-assisted piecewise adiabatic passage , 2011 .

[181]  Alberto Tosi,et al.  Inherent polarization entanglement generated from a monolithic semiconductor chip , 2013, Scientific Reports.

[182]  B. Gerardot,et al.  Entangled photon pairs from semiconductor quantum dots. , 2005, Physical Review Letters.

[183]  A. Vaziri,et al.  Entanglement of the orbital angular momentum states of photons , 2001, Nature.

[184]  Michael J. Strain,et al.  Micrometer-scale integrated silicon source of time-energy entangled photons , 2014, 1409.4881.

[185]  John Lawall,et al.  Creating polarization-entangled photon pairs from a semiconductor quantum dot using the optical Stark effect. , 2009, Physical review letters.

[186]  G. Solomon,et al.  Interference of single photons from two separate semiconductor quantum dots. , 2010, Physical review letters.

[187]  Jeremy L O'Brien,et al.  Chip-to-chip quantum photonic interconnect by path-polarization interconversion , 2016 .

[188]  Keiichi Edamatsu,et al.  Entangled Photons: Generation, Observation, and Characterization , 2007 .

[189]  I Favero,et al.  Large second-harmonic generation at 1.55 μmin oxidized AlGaAs waveguides. , 2011, Optics letters.

[190]  Thomas Jennewein,et al.  The quantum space race , 2013 .

[191]  M. Lipson,et al.  Telecom-Band Entanglement Generation for Chipscale Quantum Processing , 2008, 0801.2606.

[192]  Hiroshi Fukuda,et al.  Generation of polarization entangled photon pairs using silicon wire waveguide. , 2008, Optics express.

[193]  H. Weinfurter,et al.  Experimental quantum teleportation , 1997, Nature.

[194]  Pierre Petroff,et al.  Effect of uniaxial stress on excitons in a self-assembled quantum dot , 2006 .

[195]  O. Krebs,et al.  Manipulating exciton fine structure in quantum dots with a lateral electric field , 2006, cond-mat/0608711.

[196]  V. Scarani,et al.  Device-independent quantum key distribution secure against collective attacks , 2009, 0903.4460.

[197]  B. Gerardot,et al.  Accessing the dark exciton with light , 2010 .

[198]  Val Zwiller,et al.  Electric field induced removal of the biexciton binding energy in a single quantum dot. , 2011, Nano letters.

[199]  Gregor Weihs,et al.  Time-bin entangled photons from a quantum dot , 2008, Nature Communications.

[200]  Ou,et al.  Violation of Bell's inequality and classical probability in a two-photon correlation experiment. , 1988, Physical review letters.

[201]  V. Zwiller,et al.  Phonon-Assisted Two-Photon Interference from Remote Quantum Emitters , 2017, Nano letters.

[202]  Kyo Inoue,et al.  Entanglement formation and violation of Bell's inequality with a semiconductor single photon source. , 2004, Physical review letters.

[203]  Andrew G. White,et al.  Boson Sampling with Single-Photon Fock States from a Bright Solid-State Source. , 2016, Physical review letters.

[204]  R. Trotta,et al.  Nanomembrane Quantum‐Light‐Emitting Diodes Integrated onto Piezoelectric Actuators , 2012, Advanced materials.

[205]  Hong,et al.  Interference of two photons in parametric down conversion. , 1986, Physical review. A, General physics.

[206]  Christine Silberhorn,et al.  Heralded generation of ultrafast single photons in pure quantum States. , 2007, Physical review letters.

[207]  R. N. Schouten,et al.  Experimental loophole-free violation of a Bell inequality using entangled electron spins separated by 1.3 km , 2015, 1508.05949.

[208]  I. Sagnes,et al.  Scalable performance in solid-state single-photon sources , 2016, 1601.00654.

[209]  Christoph Simon,et al.  Prospective applications of optical quantum memories , 2013, 1306.6904.

[210]  D. Ritchie,et al.  Evolution of entanglement between distinguishable light states. , 2008, Physical review letters.

[211]  J. P. Sprengers,et al.  Waveguide superconducting single-photon detectors for integrated quantum photonic circuits , 2011, 1108.5107.

[212]  Gammon,et al.  Fine structure splitting in the optical spectra of single GaAs quantum dots. , 1996, Physical review letters.