Exemplar VAEs for Exemplar based Generation and Data Augmentation

This paper presents a framework for exemplar based generative modeling, featuring Exemplar VAEs. To generate a sample from the Exemplar VAE, one first draws a random exemplar from a training dataset, and then stochastically transforms that exemplar into a latent code, which is then used to generate a new observation. We show that the Exemplar VAE can be interpreted as a VAE with a mixture of Gaussians prior in the latent space, with Gaussian means defined by the latent encoding of the exemplars. To enable optimization and avoid overfitting, Exemplar VAE’s parameters are learned using leave-one-out and exemplar subsampling, where, for the generation of each data point, we build a prior based on a random subset of the remaining data points. To accelerate learning, which requires finding the exemplars that exert the greatest influence on the generation of each data point, we use approximate nearest neighbor search in the latent space, yielding a lower bound on the log marginal likelihood. Experiments demonstrate the effectiveness of Exemplar VAEs in density estimation, representation learning, and generative data augmentation for supervised learning. The code is available at https://exemplar-vae.github.io.

[1]  Max Welling,et al.  Auto-Encoding Variational Bayes , 2013, ICLR.

[2]  Sergey Ioffe,et al.  Rethinking the Inception Architecture for Computer Vision , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[3]  Jaime G. Carbonell,et al.  Normalized Gradient with Adaptive Stepsize Method for Deep Neural Network Training , 2017, ArXiv.

[4]  Andriy Mnih,et al.  Resampled Priors for Variational Autoencoders , 2018, AISTATS.

[5]  Michael I. Jordan,et al.  An Introduction to Variational Methods for Graphical Models , 1999, Machine Learning.

[6]  Pascal Vincent,et al.  The Manifold Tangent Classifier , 2011, NIPS.

[7]  Daniel Kunin,et al.  Loss Landscapes of Regularized Linear Autoencoders , 2019, ICML.

[8]  Daan Wierstra,et al.  Stochastic Backpropagation and Approximate Inference in Deep Generative Models , 2014, ICML.

[9]  Quoc V. Le,et al.  AutoAugment: Learning Augmentation Strategies From Data , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[10]  Jörg Bornschein,et al.  Variational Memory Addressing in Generative Models , 2017, NIPS.

[11]  Bo Zhang,et al.  Learning to Generate with Memory , 2016, ICML.

[12]  Heiga Zen,et al.  WaveNet: A Generative Model for Raw Audio , 2016, SSW.

[13]  Hideki Nakayama,et al.  Faster AutoAugment: Learning Augmentation Strategies using Backpropagation , 2019, ECCV.

[14]  Patrick Pérez,et al.  Object removal by exemplar-based inpainting , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[15]  Yoshua Bengio,et al.  NICE: Non-linear Independent Components Estimation , 2014, ICLR.

[16]  Max Welling,et al.  VAE with a VampPrior , 2017, AISTATS.

[17]  Yann LeCun,et al.  Regularization of Neural Networks using DropConnect , 2013, ICML.

[18]  Roger B. Grosse,et al.  Isolating Sources of Disentanglement in Variational Autoencoders , 2018, NeurIPS.

[19]  Ole Winther,et al.  Ladder Variational Autoencoders , 2016, NIPS.

[20]  Max Welling,et al.  Improved Variational Inference with Inverse Autoregressive Flow , 2016, NIPS 2016.

[21]  Li Fei-Fei,et al.  Perceptual Losses for Real-Time Style Transfer and Super-Resolution , 2016, ECCV.

[22]  Yann Dauphin,et al.  Language Modeling with Gated Convolutional Networks , 2016, ICML.

[23]  E. Parzen On Estimation of a Probability Density Function and Mode , 1962 .

[24]  Alexei A. Efros,et al.  Scene completion using millions of photographs , 2007, SIGGRAPH 2007.

[25]  Prafulla Dhariwal,et al.  Glow: Generative Flow with Invertible 1x1 Convolutions , 2018, NeurIPS.

[26]  Samy Bengio,et al.  Density estimation using Real NVP , 2016, ICLR.

[27]  Michael I. Jordan,et al.  Distance Metric Learning with Application to Clustering with Side-Information , 2002, NIPS.

[28]  George Tucker,et al.  Energy-Inspired Models: Learning with Sampler-Induced Distributions , 2019, NeurIPS.

[29]  Jonathon Shlens,et al.  Explaining and Harnessing Adversarial Examples , 2014, ICLR.

[30]  Geoffrey E. Hinton,et al.  Regularizing Neural Networks by Penalizing Confident Output Distributions , 2017, ICLR.

[31]  Shin Ishii,et al.  Virtual Adversarial Training: A Regularization Method for Supervised and Semi-Supervised Learning , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[32]  Adams Wei Yu,et al.  BLOCK-NORMALIZED GRADIENT METHOD: AN EMPIRICAL STUDY FOR TRAINING DEEP NEURAL NETWORK , 2018 .

[33]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[34]  Samy Bengio,et al.  Generating Sentences from a Continuous Space , 2015, CoNLL.

[35]  Nitish Srivastava,et al.  Dropout: a simple way to prevent neural networks from overfitting , 2014, J. Mach. Learn. Res..

[36]  Suman V. Ravuri,et al.  Classification Accuracy Score for Conditional Generative Models , 2019, NeurIPS.

[37]  Yang Li,et al.  A Forest from the Trees: Generation through Neighborhoods , 2020, AAAI.

[38]  Andrew McCallum,et al.  Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data , 2001, ICML.

[39]  Mohammad Norouzi,et al.  Don't Blame the ELBO! A Linear VAE Perspective on Posterior Collapse , 2019, NeurIPS.

[40]  Christopher Burgess,et al.  beta-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework , 2016, ICLR 2016.

[41]  Shakir Mohamed,et al.  Variational Inference with Normalizing Flows , 2015, ICML.

[42]  David Vázquez,et al.  PixelVAE: A Latent Variable Model for Natural Images , 2016, ICLR.

[43]  Percy Liang,et al.  Generating Sentences by Editing Prototypes , 2017, TACL.

[44]  David M. Blei,et al.  Variational Inference: A Review for Statisticians , 2016, ArXiv.

[45]  David P. Wipf,et al.  Diagnosing and Enhancing VAE Models , 2019, ICLR.

[46]  Omer Levy,et al.  Generalization through Memorization: Nearest Neighbor Language Models , 2020, ICLR.

[47]  David G. Lowe,et al.  Scalable Nearest Neighbor Algorithms for High Dimensional Data , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[48]  Bernt Schiele,et al.  Generative Adversarial Text to Image Synthesis , 2016, ICML.