Do proteomics analyses provide insights into reduced oxidative stress in the brain of an Alzheimer disease transgenic mouse model with an M631L amyloid precursor protein substitution and thereby the importance of amyloid-beta-resident methionine 35 in Alzheimer disease pathogenesis?

The single methionine (Met/M) residue of amyloid-beta (Aβ) peptide, at position 35 of the 42-mer, has important relevance for Aβ-induced oxidative stress and neurotoxicity. Recent in vivo brain studies in a transgenic (Tg) Alzheimer disease (AD) mouse model with Swedish and Indiana familial AD mutations in human amyloid precursor protein (APP) (referred to as the J20 Tg mouse) demonstrated increased levels of oxidative stress. However, the substitution of the Met631 residue of APP to leucine (Leu/L) (M631L in human APP numbering, referred to as M631L Tg and corresponding to residue 35 of Aβ1-42) resulted in no significant in vivo oxidative stress levels, thereby supporting the hypothesis that Met-35 of Aβ contributes to oxidative insult in the AD brain. It is conceivable that oxidative stress mediated by Met-35 of Aβ is important in regulating numerous downstream effects, leading to differential levels of relevant biochemical pathways in AD. Therefore, in the current study using proteomics, we tested the hypothesis that several brain proteins involved in pathways such as energy and metabolism, antioxidant activity, proteasome degradation, and pH regulation are altered in J20Tg versus M631L Tg AD mice.

[1]  D. Butterfield,et al.  Differential expression and redox proteomics analyses of an Alzheimer disease transgenic mouse model: effects of the amyloid-β peptide of amyloid precursor proteinΞ , 2011, Neuroscience.

[2]  D. Butterfield,et al.  Roles of amyloid β-peptide-associated oxidative stress and brain protein modifications in the pathogenesis of Alzheimer's disease and mild cognitive impairment , 2007 .

[3]  D. Butterfield,et al.  Oxidative stress precedes fibrillar deposition of Alzheimer’s disease amyloid β-peptide (1–42) in a transgenic Caenorhabditis elegans model , 2003, Neurobiology of Aging.

[4]  P. Davies,et al.  The prolyl isomerase Pin1 restores the function of Alzheimer-associated phosphorylated tau protein , 1999, Nature.

[5]  J. Kay,et al.  Identification of eukaryotic parvulin homologues: a new subfamily of peptidylprolyl cis-trans isomerases. , 1999, Biochemical and biophysical research communications.

[6]  D. Butterfield,et al.  In vitro and in vivo oxidative stress associated with Alzheimer's amyloid beta-peptide (1-42) , 1999, Neurobiology of aging.

[7]  D. Selkoe,et al.  Amyloid β-Protein and the Genetics of Alzheimer's Disease* , 1996, The Journal of Biological Chemistry.

[8]  D. Butterfield,et al.  Differential expression and redox proteomics analyses of an Alzheimer disease transgenic mouse model: effects of the amyloid-β peptide of amyloid precursor proteinΞ , 2011, Neuroscience.

[9]  D. Butterfield,et al.  In vivo oxidative stress in brain of Alzheimer disease transgenic mice: Requirement for methionine 35 in amyloid beta-peptide of APP. , 2010, Free radical biology & medicine.

[10]  A Hofman,et al.  Estimation of the genetic contribution of presenilin-1 and -2 mutations in a population-based study of presenile Alzheimer disease. , 1998, Human molecular genetics.