Combined Akhmediev breather and Kuznetsov–Ma solitons in a two-dimensional graded-index waveguide

We study the (2 + 1)-dimensional coupled nonlinear Schrodinger equation with variable coefficients in a graded-index waveguide, and present a combined Akhmediev breather and Kuznetsov–Ma soliton solution with nonautonomous characteristics for certain functional relations. From this solution, by modulating the relation between the maximum effective propagation distance Zmax and the periodic locations Zm based on the maximum amplitude of soliton solution, different types of controllable excitation behaviors such as limitation excitation, maintenance and postponement are demonstrated.

[1]  Yan‐Chow Ma,et al.  The Perturbed Plane‐Wave Solutions of the Cubic Schrödinger Equation , 1979 .

[2]  B. Tian,et al.  Elastic and inelastic interactions between optical spatial solitons in nonlinear optics , 2013 .

[3]  N. Akhmediev,et al.  Modulation instability and periodic solutions of the nonlinear Schrödinger equation , 1986 .

[4]  P. Kryukov,et al.  Continuous-wave femtosecond lasers , 2013 .

[5]  K. Porsezian,et al.  Similaritons in nonlinear optical systems. , 2008, Optics express.

[6]  J. Fatome,et al.  Observation of Kuznetsov-Ma soliton dynamics in optical fibre , 2012, Scientific Reports.

[7]  Mingshu Peng,et al.  Painlevé-integrability and explicit solutions of the general two-coupled nonlinear Schrödinger system in the optical fiber communications , 2013 .

[8]  B. Eggleton,et al.  Harnessing and control of optical rogue waves in supercontinuum generation. , 2008, Optics express.

[9]  V. Serkin,et al.  Hidden features of the soliton adaptation law to external potentials: Optical and matter-wave 3D nonautonomous soliton bullets , 2011 .

[10]  K. Bartschat,et al.  Complementary imaging of the nuclear dynamics in laser-excited diatomic molecular ions in the time and frequency domains , 2014 .

[11]  F. Dias,et al.  Modulation instability, Akhmediev Breathers and continuous wave supercontinuum generation. , 2009, Optics express.

[12]  C. Dai,et al.  Controllable dynamical behaviors for spatiotemporal bright solitons on continuous wave background , 2013 .

[13]  Zheng-Yi Ma,et al.  Novel rogue waves in an inhomogenous nonlinear medium with external potentials , 2013, Commun. Nonlinear Sci. Numer. Simul..

[14]  A. Mahalingam,et al.  Dispersion management and cascade compression of femtosecond nonautonomous soliton in birefringent fiber , 2013 .

[15]  Akira Hasegawa,et al.  Nonautonomous solitons in external potentials. , 2007, Physical review letters.

[16]  Guoquan Zhou,et al.  Stable light-bullet solutions in the harmonic and parity-time-symmetric potentials , 2014 .

[17]  Adrian Ankiewicz,et al.  Rogue waves and rational solutions of the Hirota equation. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  Akira Hasegawa,et al.  Solitary waves in nonautonomous nonlinear and dispersive systems: nonautonomous solitons , 2010 .

[19]  E. Kuznetsov,et al.  Solitons in a parametrically unstable plasma , 1977 .

[20]  C. Dai,et al.  Analytical spatiotemporal localizations for the generalized (3+1)-dimensional nonlinear Schrödinger equation. , 2010, Optics letters.

[21]  B. Jalali,et al.  Optical rogue waves , 2007, Nature.

[22]  Chao-Qing Dai,et al.  The management and containment of self-similar rogue waves in the inhomogeneous nonlinear Schrödinger equation , 2012 .

[23]  Frédéric Dias,et al.  The Peregrine soliton in nonlinear fibre optics , 2010 .

[24]  Guosheng Zhou,et al.  Exact multisoliton solutions of the higher-order nonlinear Schrödinger equation with variable coefficients. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  Umberto Bortolozzo,et al.  Rogue waves and their generating mechanisms in different physical contexts , 2013 .

[26]  Govind P. Agrawal,et al.  Nonlinear Fiber Optics , 1989 .

[27]  C. Dai,et al.  Nonautonomous solitons in parity-time symmetric potentials , 2014 .

[28]  C. Dai,et al.  Spatial bright and dark similaritons on cnoidal wave backgrounds in 2D waveguides with different distributed transverse diffractions , 2013 .

[29]  Chao-Qing Dai,et al.  Controllable optical rogue waves in the femtosecond regime. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  Adrian Ankiewicz,et al.  Second-order nonlinear Schrödinger equation breather solutions in the degenerate and rogue wave limits. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  T. Brooke Benjamin,et al.  The disintegration of wave trains on deep water Part 1. Theory , 1967, Journal of Fluid Mechanics.

[32]  Mingshu Peng,et al.  Systematic construction of infinitely many conservation laws for certain nonlinear evolution equations in mathematical physics , 2013 .

[33]  D. Meyerhofer,et al.  Soliton collisions in optical birefringent fibers , 1994 .

[34]  Xuan-hui Lu,et al.  The compression and stretching of similaritons with nonlinear tunneling in optical fibers , 2012 .

[35]  Shiqun Zhu,et al.  Controllable behaviours of rogue wave triplets in the nonautonomous nonlinear and dispersive system , 2012 .

[36]  J. Soto-Crespo,et al.  Extreme waves that appear from nowhere: On the nature of rogue waves , 2009 .