Efficient Threshold Aggregation of Moving Objects

Calculating aggregation operators of moving point objects, using time as a continuous variable, presents unique problems when querying for congestion in a moving and changing (or dynamic) query space. We present a set of congestion query operators, based on a threshold value, that estimate the following 5 aggregation operations in d-dimensions. 1) We call the count of point objects that intersect the dynamic query space during the query time interval, the CountRange. 2) We call the Maximum (or Minimum) congestion in the dynamic query space at any time during the query time interval, the MaxCount (or MinCount). 3) We call the sum of time that the dynamic query space is congested, the ThresholdSum. 4) We call the number of times that the dynamic query space is congested, the ThresholdCount. And 5) we call the average length of time of all the time intervals when the dynamic query space is congested, the ThresholdAverage. These operators rely on a novel approach to transforming the problem of selection based on position to a problem of selection based on a threshold. These operators can be used to predict concentrations of migrating birds that may carry disease such as Bird Flu and hence the information may be used to predict high risk areas. On a smaller scale, those operators are also applicable to maintaining safety in airplane operations. We present the theory of our estimation operators and provide algorithms for exact operators. The implementations of those operators, and experiments, which include data from more than 7500 queries, indicate that our estimation operators produce fast, efficient results with error under 5%.

[1]  Christian S. Jensen,et al.  Indexing the positions of continuously moving objects , 2000, SIGMOD '00.

[2]  Yi Chen,et al.  Efficient aggregation over moving objects , 2003, 10th International Symposium on Temporal Representation and Reasoning, 2003 and Fourth International Conference on Temporal Logic. Proceedings..

[3]  Özgür Ulusoy,et al.  A Quadtree-Based Dynamic Attribute Indexing Method , 1998, Comput. J..

[4]  Scot Anderson Aggregation Estimation for 2D Moving Points , 2006, Thirteenth International Symposium on Temporal Representation and Reasoning (TIME'06).

[5]  Scot Anderson,et al.  Software verification and spatiotemporal aggregation in constraint databases , 2007 .

[6]  Sharad Mehrotra,et al.  Querying Mobile Objects in Spatio-Temporal Databases , 2001, SSTD.

[7]  Christian S. Jensen,et al.  Techniques for efficient road-network-based tracking of moving objects , 2005, IEEE Transactions on Knowledge and Data Engineering.

[8]  Dimitrios Gunopulos,et al.  Efficient computation of temporal aggregates with range predicates , 2001, PODS '01.

[9]  Yannis Theodoridis,et al.  On the Generation of Spatiotemporal Datasets , 1999 .

[10]  Jianwen Su,et al.  On moving object queries: (extended abstract) , 2002, PODS '02.

[11]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[12]  Dimitrios Gunopulos,et al.  Temporal and spatio-temporal aggregations over data streams using multiple time granularities , 2003, Inf. Syst..

[13]  Christian S. Jensen,et al.  Indexing the past, present, and anticipated future positions of moving objects , 2006, TODS.

[14]  Dimitrios Gunopulos,et al.  Selectivity estimators for multidimensional range queries over real attributes , 2005, The VLDB Journal.

[15]  Dimitrios Gunopulos,et al.  On-Line Discovery of Dense Areas in Spatio-temporal Databases , 2003, SSTD.

[16]  Hanan Samet,et al.  The Design and Analysis of Spatial Data Structures , 1989 .

[17]  Yannis Manolopoulos,et al.  Spatial Databases , 2004 .

[18]  Hanan Samet,et al.  Foundations of multidimensional and metric data structures , 2006, Morgan Kaufmann series in data management systems.

[19]  Christian S. Jensen,et al.  How Would You Like to Aggregate Your Temporal Data? , 2006, Thirteenth International Symposium on Temporal Representation and Reasoning (TIME'06).

[20]  Agnès Voisard,et al.  Spatial databases - with applications to GIS , 2002 .

[21]  Yi Chen,et al.  Max-count aggregation estimation for moving points , 2004, Proceedings. 11th International Symposium on Temporal Representation and Reasoning, 2004. TIME 2004..

[22]  Peter Z. Revesz,et al.  Efficient rectangle indexing algorithms based on point dominance , 2005, 12th International Symposium on Temporal Representation and Reasoning (TIME'05).

[23]  Hans-Peter Kriegel,et al.  The R*-tree: an efficient and robust access method for points and rectangles , 1990, SIGMOD '90.

[24]  Jimeng Sun,et al.  Selectivity estimation for predictive spatio-temporal queries , 2003, Proceedings 19th International Conference on Data Engineering (Cat. No.03CH37405).

[25]  Ouri Wolfson,et al.  Accuracy and Resource Concumption in Tracking and Location Prediction , 2003, SSTD.

[26]  Christian S. Jensen,et al.  Efficient tracking of moving objects with precision guarantees , 2004, The First Annual International Conference on Mobile and Ubiquitous Systems: Networking and Services, 2004. MOBIQUITOUS 2004..

[27]  Chin-Wan Chung,et al.  Selectivity estimation for spatio-temporal queries to moving objects , 2002, SIGMOD '02.

[28]  Bart Kuijpers,et al.  Introduction to constraint databases , 2002, SGMD.

[29]  Mengchu Cai,et al.  Parametric R-Tree: An Index Structure for Moving Objects , 2000 .

[30]  Sridhar Ramaswamy,et al.  Selectivity estimation in spatial databases , 1999, SIGMOD '99.

[31]  Ralf Hartmut Güting,et al.  Moving Objects Databases , 2005 .

[32]  G. Marsaglia,et al.  The Ziggurat Method for Generating Random Variables , 2000 .

[33]  Yannis Manolopoulos,et al.  On the Generation of Time-Evolving Regional Data* , 2002, GeoInformatica.

[34]  Dimitrios Gunopulos,et al.  On indexing mobile objects , 1999, PODS '99.

[35]  Jimeng Sun,et al.  Querying about the past, the present, and the future in spatio-temporal databases , 2004, Proceedings. 20th International Conference on Data Engineering.

[36]  Dimitrios Gunopulos,et al.  Indexing mobile objects on the plane , 2002, Proceedings. 13th International Workshop on Database and Expert Systems Applications.

[37]  Antonin Guttman,et al.  R-trees: a dynamic index structure for spatial searching , 1984, SIGMOD '84.

[38]  Yufei Tao,et al.  Historical spatio-temporal aggregation , 2005, TOIS.

[39]  Klaus H. Hinrichs,et al.  Managing uncertainty in moving objects databases , 2004, TODS.

[40]  Jimeng Sun,et al.  The TPR*-Tree: An Optimized Spatio-Temporal Access Method for Predictive Queries , 2003, VLDB.

[41]  Ralf Hartmut Güting,et al.  Indexing the Trajectories of Moving Objects in Networks* , 2004, GeoInformatica.

[42]  Dimitrios Gunopulos,et al.  Indexing mobile objects using dual transformations , 2004, The VLDB Journal.

[43]  Dieter Pfoser,et al.  Trajectory Indexing Using Movement Constraints* , 2005, GeoInformatica.

[44]  Chinya V. Ravishankar,et al.  Roads, codes, and spatiotemporal queries , 2004, PODS.

[45]  Dieter Pfoser,et al.  Synthetic and Real Spatiotemporal Datasets , 2003, IEEE Data Eng. Bull..