A 70 pJ/Pulse Analog Front-End in 130 nm CMOS for UWB Impulse Radio Receivers

This paper presents an integrated ultra-low power analog front-end (AFE) architecture for UWB impulse radio receivers. The receiver is targeted towards applications like wireless sensor networks typically requiring ultra energy-efficient, low data-rate communication over a relative short range. The proposed receiver implements pulse correlation in the analog domain to severely relax the power consumption of the ADCs and digital backend. Furthermore a fully integrated prototype of the analog front-end, containing a PLL, programmable clocking generator, analog pulse correlator, a linear-in-dB variable gain amplifier and a 4-bit ADC, is demonstrated. Several design decisions and techniques, like correlation with a windowed LO instead of with a matched template, exploiting the duty-cycled nature of the system, operation in the sub-1 GHz band as well as careful circuit design are employed to reach ultra-low power consumption. The analog front-end was manufactured in 130 nm CMOS and the active circuit area measures 1000 mum times 1500 mum. A maximum channel conversion gain of 50 dB can be achieved. Two symbol rates, 39.0625 M pulses per second (Mpps) and 19.531 Mpps are supported. The AFE consumes 2.3 mA from a 1.2 V power supply when operating at 39.0625 Mpps. This corresponds to an energy consumption of 70 pJ/pulse. A wireless link over more than 10 m in an office-like environment has been demonstrated at 19.531 Mpps with a PER < 1E -3 under direct LOS conditions.

[1]  Marian Verhelst,et al.  DESIGN OF AN ENERGY-EFFICIENT PULSED UWB RECEIVER , 2007 .

[2]  Yuanjin Zheng,et al.  An ultra low power and high efficiency UWB transmitter for WPAN applications , 2008, ESSCIRC 2008 - 34th European Solid-State Circuits Conference.

[3]  A. Thanachayanont,et al.  A 1-V 25-dB 100-MHz CMOS variable gain amplifier cell , 2004, IEEE International Symposium on Communications and Information Technology, 2004. ISCIT 2004..

[4]  Geert Van der Plas,et al.  Ultra-wide-band transmitter for low-power wireless body area networks: design and evaluation , 2005, IEEE Transactions on Circuits and Systems I: Regular Papers.

[5]  Yuanjin Zheng,et al.  A 0.18μm CMOS 802.15.4a UWB Transceiver for Communication and Localization , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[6]  Michiel Steyaert,et al.  CMOS Fractional-N Synthesizers: Design for High Spectral Purity and Monolithic Integration , 2003 .

[7]  Liesbet Van der Perre,et al.  A 10.6mW/0.8pJ power-scalable 1GS/s 4b ADC in 0.18μm CMOS with 5.8GHz ERBW , 2006, DAC.

[8]  Ramesh Harjani,et al.  Analysis and design of low-phase-noise ring oscillators , 2000, ISLPED'00: Proceedings of the 2000 International Symposium on Low Power Electronics and Design (Cat. No.00TH8514).

[9]  A.P. Chandrakasan,et al.  A 2.5 nJ/bit 0.65 V Pulsed UWB Receiver in 90 nm CMOS , 2007, IEEE Journal of Solid-State Circuits.

[10]  Beomsup Kim,et al.  A low-noise 900 MHz VCO in 0.6 /spl mu/m CMOS , 1998, 1998 Symposium on VLSI Circuits. Digest of Technical Papers (Cat. No.98CH36215).

[11]  Andrea Baschirotto,et al.  A CMOS Ultra-Wideband Receiver for Low Data-Rate Communication , 2007, IEEE Journal of Solid-State Circuits.

[12]  Pierangelo Terreni,et al.  A 10.6mW/0.8pJ power-scalable 1GS/s 4b ADC in 0.18 um CMOS with 5.8GHz ERBW , 2006 .

[13]  Y. Sanada,et al.  A CMOS ultra-wideband impulse radio transceiver for 1-mb/s data communications and /spl plusmn/2.5-cm range finding , 2006, IEEE Journal of Solid-State Circuits.

[14]  Beomsup Kim,et al.  A low-noise, 900-MHz VCO in 0.6-/spl mu/m CMOS , 1999 .

[15]  M. Anis,et al.  A 10Mb/s 2.6mW 6-to-10GHz UWB impulse transceiver , 2008, 2008 IEEE International Conference on Ultra-Wideband.

[16]  A. Molisch,et al.  IEEE 802.15.4a channel model-final report , 2004 .

[17]  David A. Johns,et al.  Analog Integrated Circuit Design , 1996 .

[18]  Rui Xu,et al.  Power-efficient switching-based CMOS UWB transmitters for UWB communications and Radar systems , 2006, IEEE Transactions on Microwave Theory and Techniques.

[19]  B.P. Ginsburg,et al.  A 3.1 to 10.6 GHz 100 Mb/s Pulse-Based Ultra-Wideband Radio Receiver Chipset , 2006, 2006 IEEE International Conference on Ultra-Wideband.

[20]  Mourad N. El-Gamal,et al.  Design of low power CMOS ultra-wideband 3.1–10.6 GHz pulse-based transmitters , 2008, 2008 IEEE Custom Integrated Circuits Conference.

[21]  W. Dehaene,et al.  A Flexible, Ultra-Low-Energy 35 pJ/Pulse Digital Back-End for a QAC IR-UWB Receiver , 2008, IEEE Journal of Solid-State Circuits.

[22]  P. Andreani,et al.  On the use of MOS varactors in RF VCOs , 2000, IEEE Journal of Solid-State Circuits.

[23]  Yuanjin Zheng,et al.  A 0.18/spl mu/m CMOS Dual-Band UWB Transceiver , 2007, 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[24]  Won Namgoong,et al.  A High Data-Rate Energy-Efficient Interference-Tolerant Fully Integrated CMOS Frequency Channelized UWB Transceiver for Impulse Radio , 2008, IEEE Journal of Solid-State Circuits.

[25]  Tadahiro Kuroda,et al.  A CMOS ultra-wideband impulse radio transceiver for 1-Mb/s data communications and ±2.5-cm range finding , 2006, VLSIC 2006.

[26]  J. Rabaey,et al.  A 400 /spl mu/W-RX, 1.6mW-TX super-regenerative transceiver for wireless sensor networks , 2005, ISSCC. 2005 IEEE International Digest of Technical Papers. Solid-State Circuits Conference, 2005..

[27]  R.A. Shafik,et al.  On the Extended Relationships Among EVM, BER and SNR as Performance Metrics , 2006, 2006 International Conference on Electrical and Computer Engineering.

[28]  I.D. O'Donnell,et al.  A 2.3mW Baseband Impulse-UWB Transceiver Front-End in CMOS , 2006, 2006 Symposium on VLSI Circuits, 2006. Digest of Technical Papers..

[29]  M. Anis,et al.  Low power UWB pulse radio transceiver front-end , 2007, ESSCIRC 2007 - 33rd European Solid-State Circuits Conference.