Finite Element Approximation of an Unsteady Projection-Based VMS Turbulence Model with Wall Laws
暂无分享,去创建一个
Macarena Gómez Mármol | Samuele Rubino | Tomás Chacón Rebollo | T. C. Rebollo | S. Rubino | M. G. Mármol
[1] Thomas J. R. Hughes,et al. Large eddy simulation of turbulent channel flows by the variational multiscale method , 2001 .
[2] L. Prandtl. 7. Bericht über Untersuchungen zur ausgebildeten Turbulenz , 1925 .
[3] Frédéric Hecht,et al. Numerical approximation of the Smagorinsky turbulence model applied to the primitive equations of the ocean , 2014, Math. Comput. Simul..
[4] R. Verfürth. Finite element approximation of steady Navier-Stokes equations with mixed boundary conditions , 1985 .
[5] Volker John,et al. Analysis of a full space-time discretization of the Navier-Stokes equations by a local projection stabilization method , 2015 .
[6] Cornelius O. Horgan,et al. Korn's Inequalities and Their Applications in Continuum Mechanics , 1995, SIAM Rev..
[7] Roger Lewandowski,et al. Mathematical and Numerical Foundations of Turbulence Models and Applications , 2014 .
[8] E. Boschi. Recensioni: J. L. Lions - Quelques méthodes de résolution des problémes aux limites non linéaires. Dunod, Gauthier-Vi;;ars, Paris, 1969; , 1971 .
[9] T. Hughes,et al. The variational multiscale method—a paradigm for computational mechanics , 1998 .
[10] Volker Gravemeier,et al. Scale-separating operators for variational multiscale large eddy simulation of turbulent flows , 2006, J. Comput. Phys..
[11] T. Hughes,et al. Large Eddy Simulation and the variational multiscale method , 2000 .
[12] T. Hughes,et al. Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows , 2007 .
[13] T. Hughes,et al. Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on unstretched meshes , 2010 .
[14] J. Simon. Compact sets in the spaceLp(O,T; B) , 1986 .
[15] R. Verfürth. Finite element approximation on incompressible Navier-Stokes equations with slip boundary condition , 1987 .
[16] Macarena Gómez Mármol,et al. Numerical analysis of a finite element projection-based VMS turbulence model with wall laws , 2015 .
[17] Thomas J. R. Hughes,et al. The multiscale formulation of large eddy simulation: Decay of homogeneous isotropic turbulence , 2001 .
[18] Christine Bernardi,et al. Discr'etisations variationnelles de probl`emes aux limites elliptiques , 2004 .
[19] J. Smagorinsky,et al. GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS , 1963 .
[20] P. Moin,et al. Effects of the Computational Time Step on Numerical Solutions of Turbulent Flow , 1994 .
[21] Vivette Girault,et al. A high order term-by-term stabilization solver for incompressible flow problems , 2013 .
[22] Victor M. Calo,et al. Weak Dirichlet Boundary Conditions for Wall-Bounded Turbulent Flows , 2007 .
[23] Carlos Paré,et al. Existence, uniqueness and regularity of solution of the equations of a turbulence model for incompressible fluids , 1992 .
[24] Tomás Chacón Rebollo. An analysis technique for stabilized finite element solution of incompressible flows , 2001 .
[25] L. R. Scott,et al. Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .
[26] T. Chacón Rebollo,et al. Numerical Analysis of Penalty Stabilized Finite Element Discretizations of Evolution Navier–Stokes Equations , 2015, J. Sci. Comput..
[27] P. Moin,et al. Numerical investigation of turbulent channel flow , 1981, Journal of Fluid Mechanics.
[28] D. Spalding. A Single Formula for the “Law of the Wall” , 1961 .
[29] T. C. Rebollo,et al. A variational finite element model for large-eddy simulations of turbulent flows , 2013, 1302.2753.
[30] Volker John,et al. Numerical Studies of Finite Element Variational Multiscale Methods for Turbulent Flow Simulations , 2010 .
[31] I. Akkerman. Adaptive Variational Multiscale Formulations using the Discrete Germano , 2007 .
[32] T. Kármán,et al. Mechanische Ahnlichkeit und Turbulenz , 1930 .
[33] R. Codina. Comparison of some finite element methods for solving the diffusion-convection-reaction equation , 1998 .
[34] J. Lions. Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .
[35] E. R. V. Driest. On Turbulent Flow Near a Wall , 1956 .
[36] Li-Bin Liu,et al. A Robust Adaptive Grid Method for a System of Two Singularly Perturbed Convection-Diffusion Equations with Weak Coupling , 2014, J. Sci. Comput..
[37] Volker John,et al. Finite element error analysis for a projection-based variational multiscale method with nonlinear eddy viscosity , 2008 .
[38] John Kim,et al. DIRECT NUMERICAL SIMULATION OF TURBULENT CHANNEL FLOWS UP TO RE=590 , 1999 .