Field and hot electron-induced degradation in GaN-based power MIS-HEMTs

Abstract We investigate the degradation of AlGaN/GaN MIS-HEMTs submitted to gate step-stress experiments, and demonstrate the existence of field- and hot-electron induced processes. When the devices are submitted to gate-step stress with high VDS > 50 V, four different regimes are identified: (i) for VGS   0 V, the density of hot electrons is significantly reduced, due to the increased interface scattering and device temperature. As a consequence, EL signal drops to zero, and the electrons trapped during phase (ii) are de-trapped back to the channel, where they are attracted by the high 2DEG potential. (iv) Finally, for VGS > 5 V, a significant increase in threshold voltage is detected. This effect is observed only for high positive voltages, i.e. when a significant leakage current flows through the gate. Such gradual degradation is ascribed to the injection of electrons from the 2DEG to the gate insulator, which is a field-driven effect. These results were obtained by combined electrical and optical characterization carried out at different voltages during the step stress.