Minimum Dominating Set Problem for Unit Disks Revisited

In this article, we study approximation algorithms for the problem of computing minimum dominating set for a given set S of n unit disks in ℝ2. We first present a simple O(n log k) time 5-factor approximation algorithm for this problem, where k is the size of the output. The best known 4-factor and 3-factor approximation algorithms for the same problem run in time O(n8 log n) and O(n15 log n) respectively [M. De, G. K. Das, P. Carmi and S. C. Nandy, Approximation algorithms for a variant of discrete piercing set problem for unit disks, Int. J. of Computational Geometry and Appl., 22(6):461–477, 2013]. We show that the time complexity of the in-place 4-factor approximation algorithm for this problem can be improved to O(n6 log n). A minor modification of this algorithm produces a 143-factor approximation algorithm in O(n5 log n) time. The same techniques can be applied to have a 3-factor and a 4513-factor approximation algorithms in time O(n11 log n) and O(n10 log n) respectively. Finally, we propose a very important shifting lemma, which is of independent interest, and it helps to present 52-factor approximation algorithm for the same problem. It also helps to improve the time complexity of the proposed PTAS for the problem.

[1]  Vasek Chvátal,et al.  A Greedy Heuristic for the Set-Covering Problem , 1979, Math. Oper. Res..

[2]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[3]  Alejandro López-Ortiz,et al.  On the discrete Unit Disk Cover Problem , 2012, Int. J. Comput. Geom. Appl..

[4]  Changyuan Yu,et al.  A 5+epsilon-approximation algorithm for minimum weighted dominating set in unit disk graph , 2009, Theor. Comput. Sci..

[5]  Weili Wu,et al.  A better constant-factor approximation for weighted dominating set in unit disk graph , 2009, J. Comb. Optim..

[6]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[7]  Gautam K. Das,et al.  Unit disk cover problem in 2D , 2013, J. Discrete Algorithms.

[8]  Nabil H. Mustafa,et al.  Improved Results on Geometric Hitting Set Problems , 2010, Discret. Comput. Geom..

[9]  Ran Raz,et al.  A sub-constant error-probability low-degree test, and a sub-constant error-probability PCP characterization of NP , 1997, STOC '97.

[10]  Matt Gibson,et al.  Algorithms for Dominating Set in Disk Graphs: Breaking the logn Barrier - (Extended Abstract) , 2010, ESA.

[11]  Paz Carmi,et al.  Approximation Algorithms for a Variant of discrete Piercing Set Problem for Unit Disks , 2013, Int. J. Comput. Geom. Appl..

[12]  Petr Vojtechovský,et al.  An Improved Approximation Factor For The Unit Disk Covering Problem , 2006, CCCG.

[13]  Thomas Erlebach,et al.  Constant-Factor Approximation for Minimum-Weight (Connected) Dominating Sets in Unit Disk Graphs , 2006, APPROX-RANDOM.

[14]  Ion I. Mandoiu,et al.  Selecting Forwarding Neighbors in Wireless Ad Hoc Networks , 2004, Mob. Networks Appl..

[15]  J. Schaer The Densest Packing of 9 Circles in a Square , 1965, Canadian Mathematical Bulletin.

[16]  Johann Hurink,et al.  A PTAS for the Minimum Dominating Set Problem in Unit Disk Graphs , 2005, WAOA.

[17]  Matthew J. Katz,et al.  Polynomial-time approximation schemes for piercing and covering with applications in wireless networks , 2008, Comput. Geom..

[18]  Stephane Durocher,et al.  An Improved Line-Separable Algorithm for Discrete Unit Disk Cover , 2010, Discret. Math. Algorithms Appl..

[19]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[20]  Charles J. Colbourn,et al.  Unit disk graphs , 1991, Discret. Math..

[21]  Pat Morin,et al.  Space-efficient planar convex hull algorithms , 2004, Theor. Comput. Sci..

[22]  David S. Johnson The NP-Completeness Column: An Ongoing Guide , 1986, J. Algorithms.

[23]  Weili Wu,et al.  New approximations for minimum-weighted dominating sets and minimum-weighted connected dominating sets on unit disk graphs , 2011, Theor. Comput. Sci..

[24]  Wolfgang Maass,et al.  Approximation schemes for covering and packing problems in image processing and VLSI , 1985, JACM.

[25]  Harry B. Hunt,et al.  Simple heuristics for unit disk graphs , 1995, Networks.

[26]  Alejandro López-Ortiz,et al.  The Within-Strip Discrete Unit Disk Cover Problem , 2017, CCCG.

[27]  Matthew J. Katz,et al.  Covering Points by Unit Disks of Fixed Location , 2007, ISAAC.