A note on the k-Narayana sequence

In the present article, we define the k-Narayana sequence of integer numbers. We study recurrence relations and some combinatorial properties of these numbers, and of the sum of their first n terms. These properties are derived from matrix methods. We also study some relations between the k-Narayana sequence and convolved k-Narayana sequence, and permanents and determinants of one type of Hessenberg matrix. Finally, we show how these sequences arise from a family of substitutions.

[1]  José L. Ramírez,et al.  Some Properties of Convolved -Fibonacci Numbers , 2013 .

[2]  Emrah Kilic,et al.  The generalized order-k Fibonacci-Pell sequence by matrix methods , 2007 .

[3]  Yang Wang,et al.  Self-affine tiling via substitution dynamical systems and Rauzy fractals , 2002 .

[4]  Generating Matrices for Weighted Sums of Second Order Linear Recurrences , 2009 .

[5]  James D. Louck,et al.  The combinatorial power of the companion matrix , 1996 .

[6]  José L. Ramírez On convolved generalized Fibonacci and Lucas polynomials , 2014, Appl. Math. Comput..

[7]  Fatih Yilmaz,et al.  Some Properties of Padovan Sequence by Matrix Methods , 2012, Ars Comb..

[8]  Nathan D. Cahill,et al.  Fibonacci Determinants , 2002 .

[9]  Jishe Feng More Identities On The Tribonacci Numbers , 2011, Ars Comb..

[10]  N. Irmak,et al.  Tribonacci numbers with indices in arithmetic progression and their sums , 2013 .

[11]  M. Queffélec Substitution dynamical systems, spectral analysis , 1987 .

[12]  Emrah Kilic Tribonacci Sequences With Certain Indices And Their Sums , 2008, Ars Comb..

[13]  Hsuan-Chu Li On Fibonacci-Hessenberg matrices and the Pell and Perrin numbers , 2012, Appl. Math. Comput..

[14]  D. Bozkurt,et al.  Hessenberg matrices and the Pell and Perrin numbers , 2011 .

[15]  Richard A. Brualdi,et al.  Convex Polyhedra of Doubly Stochastic Matrices. I. Applications of the Permanent Function , 1977, J. Comb. Theory A.

[16]  Mircea Merca,et al.  A note on the determinant of a Toeplitz-Hessenberg matrix , 2013 .

[17]  Nick Lord,et al.  Pisot and Salem Numbers , 1991 .

[18]  M. Mathematical,et al.  A Matrix Approach for General Higher Order Linear Recurrences , 2011 .

[19]  Ahmet Ali Öcal,et al.  On the representation of k-generalized Fibonacci and Lucas numbers , 2005, Appl. Math. Comput..

[20]  W. J. Thron,et al.  Encyclopedia of Mathematics and its Applications. , 1982 .

[22]  P. Trojovský,et al.  eu ON PERMANENTS OF SOME TRIDIAGONAL MATRICES CONNECTED WITH FIBONACCI NUMBERS , 2014 .

[23]  Thomas Koshy,et al.  Fibonacci and Lucas Numbers With Applications , 2018 .

[24]  J. J. '. ina ON DETERMINANTS OF SOME TRIDIAGONAL MATRICES CONNECTED WITH FIBONACCI NUMBERS , 2013 .