High-resolution gamma-ray spectroscopy with a microwave-multiplexed transition-edge sensor array

We demonstrate very high resolution photon spectroscopy with a microwave-multiplexed two-pixel transition-edge sensor (TES) array. We measured a 153Gd photon source and achieved an energy resolution of 63 eV full-width-at-half-maximum at 97 keV and an equivalent readout system noise of 86 pA/Hz at the TES. The readout circuit consists of superconducting microwave resonators coupled to radio-frequency superconducting-quantum-interference-devices and transduces changes in input current to changes in phase of a microwave signal. We use flux-ramp modulation to linearize the response and evade low-frequency noise. This demonstration establishes one path for the readout of cryogenic X-ray and gamma-ray sensor arrays with more than 103 elements and spectral resolving powers R=λ/Δλ>103.

[1]  S. R. Golwala,et al.  Position and energy-resolved particle detection using phonon-mediated microwave kinetic inductance detectors , 2012, 1203.4549.

[2]  Jonas Zmuidzinas,et al.  Noise properties of superconducting coplanar waveguide microwave resonators , 2006, cond-mat/0609614.

[3]  P. Wilson,et al.  An open-source readout for MKIDs , 2010, Astronomical Telescopes + Instrumentation.

[4]  Kent D. Irwin,et al.  Demonstration of a multiplexer of dissipationless superconducting quantum interference devices , 2008 .

[5]  T. Gerrits,et al.  Extending single-photon optimized superconducting transition edge sensors beyond the single-photon counting regime , 2012, 2012 Conference on Lasers and Electro-Optics (CLEO).

[6]  P. A. R. Ade,et al.  SCUBA-2: the 10 000 pixel bolometer camera on the James Clerk Maxwell Telescope , 2013, 1301.3650.

[7]  J. Zmuidzinas,et al.  Crosstalk Reduction for Superconducting Microwave Resonator Arrays , 2012, IEEE Transactions on Microwave Theory and Techniques.

[8]  R. Barends,et al.  Contribution of dielectrics to frequency and noise of NbTiN superconducting resonators , 2008, 0804.3499.

[9]  K. Irwin,et al.  Magnetically Coupled Microcalorimeters , 2012 .

[10]  Adrian T. Lee,et al.  High-resolution operation of frequency-multiplexed transition-edge photon sensors , 2002 .

[11]  Kent D. Irwin,et al.  Flux-Ramp Modulation for SQUID Multiplexing , 2012 .

[12]  G. C. Hilton,et al.  Advanced Code-Division Multiplexers for Superconducting Detector Arrays , 2011, 1110.1608.

[13]  Dan Werthimer,et al.  A readout for large arrays of microwave kinetic inductance detectors. , 2012, The Review of scientific instruments.

[14]  H. Leduc,et al.  A broadband superconducting detector suitable for use in large arrays , 2003, Nature.

[15]  S. Moseley,et al.  Thermal detectors as X-ray spectrometers , 1984 .

[16]  G. C. Hilton,et al.  Code-division multiplexing for x-ray microcalorimeters , 2012, 1201.6289.

[17]  Sae Woo Nam,et al.  Detection of single infrared, optical, and ultraviolet photons using superconducting transition edge sensors , 1998 .

[18]  Kent D. Irwin,et al.  Microwave SQUID multiplexer , 2004 .

[19]  Fiona A. Harrison,et al.  Position sensitive x-ray spectrophotometer using microwave kinetic inductance detectors , 2006 .

[20]  Kent D. Irwin,et al.  Time-division multiplexing of high-resolution x-ray microcalorimeters: Four pixels and beyond , 2004 .

[21]  B. Alpert,et al.  A high resolution gamma-ray spectrometer based on superconducting microcalorimeters. , 2012, The Review of scientific instruments.

[22]  Jonas Zmuidzinas,et al.  Superconducting Microresonators: Physics and Applications , 2012 .

[23]  Samuel Harvey Moseley,et al.  Signal processing for microcalorimeters , 1993 .