Small bipartite subgraph polytopes

We compute a complete linear description of the bipartite subgraph polytope, for up to seven nodes, and a conjectured complete description for eight nodes. We then show how these descriptions were used to compute the integrality ratio of various relaxations of the max-cut problem, again for up to eight nodes.

[1]  Monique Laurent,et al.  Max-cut problem , 1997 .

[2]  Nisheeth K. Vishnoi,et al.  The Unique Games Conjecture, Integrality Gap for Cut Problems and Embeddability of Negative Type Metrics into l1 , 2005, FOCS.

[3]  Richard M. Karp,et al.  Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.

[4]  Martin Grötschel,et al.  Facets of the Bipartite Subgraph Polytope , 1985, Math. Oper. Res..

[5]  Uriel Feige,et al.  On the optimality of the random hyperplane rounding technique for MAX CUT , 2002, Random Struct. Algorithms.

[6]  David Avis,et al.  Stronger linear programming relaxations of max-cut , 2002, Math. Program..

[7]  Martin Grötschel,et al.  Weakly bipartite graphs and the Max-cut problem , 1981, Oper. Res. Lett..

[8]  Michel Deza,et al.  Geometry of cuts and metrics , 2009, Algorithms and combinatorics.

[9]  Michel Deza,et al.  Facets for the cut cone I , 1992, Math. Program..

[10]  Ali Ridha Mahjoub,et al.  On the cut polytope , 1986, Math. Program..

[11]  Charles Delorme,et al.  Laplacian eigenvalues and the maximum cut problem , 1993, Math. Program..

[12]  Sahar Karimi,et al.  Max-cut Problem , 2007 .

[13]  Raymond E. Miller,et al.  Complexity of Computer Computations , 1972 .

[14]  Dennis Saleh Zs , 2001 .

[15]  Gerhard Reinelt,et al.  Decomposition and Parallelization Techniques for Enumerating the Facets of Combinatorial Polytopes , 2001, Int. J. Comput. Geom. Appl..

[16]  William J. Cook,et al.  Combinatorial optimization , 1997 .

[17]  Michel Deza,et al.  Facets for the cut cone II: Clique-web inequalities , 1992, Math. Program..

[18]  Mauro Dell'Amico,et al.  Annotated Bibliographies in Combinatorial Optimization , 1997 .

[19]  David P. Williamson,et al.  Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.

[20]  Viatcheslav P. Grishukhin All Facets of the Cut Cone Cn for n = 7 are Known , 1990, Eur. J. Comb..

[21]  Zsolt Tuza,et al.  The expected relative error of the polyhedral approximation of the max-cut problem , 1994, Oper. Res. Lett..

[22]  Michel X. Goemans,et al.  The Strongest Facets of the Acyclic Subgraph Polytope Are Unknown , 1996, IPCO.

[23]  Zsolt Tuza,et al.  Maximum cuts and largest bipartite subgraphs , 1993, Combinatorial Optimization.