Labeling strategies for 13C-detected aligned-sample solid-state NMR of proteins.

[1]  V. Tugarinov,et al.  Selective backbone labeling of proteins using {1,2-13C2}-pyruvate as carbon source , 2009, Journal of biomolecular NMR.

[2]  Benjamin J. Wylie,et al.  Multidimensional solid state NMR of anisotropic interactions in peptides and proteins. , 2008, The Journal of chemical physics.

[3]  S. Opella,et al.  Tailoring 13C labeling for triple‐resonance solid‐state NMR experiments on aligned samples of proteins , 2007, Magnetic resonance in chemistry : MRC.

[4]  A. McDermott,et al.  Assignment of congested NMR spectra: carbonyl backbone enrichment via the Entner-Doudoroff pathway. , 2007, Journal of magnetic resonance.

[5]  Patrik Lundström,et al.  Fractional 13C enrichment of isolated carbons using [1-13C]- or [2-13C]-glucose facilitates the accurate measurement of dynamics at backbone Cα and side-chain methyl positions in proteins , 2007, Journal of biomolecular NMR.

[6]  S. Opella,et al.  Triple resonance experiments for aligned sample solid-state NMR of (13)C and (15)N labeled proteins. , 2007, Journal of magnetic resonance.

[7]  L. A. Day,et al.  Filamentous phage studied by magic-angle spinning NMR: resonance assignment and secondary structure of the coat protein in Pf1. , 2007, Journal of the American Chemical Society.

[8]  L. Gierasch,et al.  Peptides and the development of double- and triple-resonance solid-state NMR of aligned samples. , 2005, The journal of peptide research : official journal of the American Peptide Society.

[9]  S. Opella,et al.  Structure of the coat protein in Pf1 bacteriophage determined by solid-state NMR spectroscopy. , 2004, Journal of molecular biology.

[10]  A Nevzorov,et al.  Structure determination of membrane proteins by NMR spectroscopy. , 2002, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[11]  M. Schubert,et al.  Structure of a protein determined by solid-state magic-angle-spinning NMR spectroscopy , 2002, Nature.

[12]  L. Lian,et al.  Labeling Approaches for Protein Structural Studies by Solution‐State and Solid‐State NMR , 2002 .

[13]  L. Lian,et al.  Labelling approaches for protein structural studies by solution-state and solid-state NMR , 2001 .

[14]  Y. Ishii,et al.  Multidimensional Heteronuclear Correlation Spectroscopy of a Uniformly 15N- and 13C-Labeled Peptide Crystal: Toward Spectral Resolution, Assignment, and Structure Determination of Oriented Molecules in Solid-State NMR , 2000 .

[15]  S. Opella,et al.  Two- and three-dimensional 1H/13C PISEMA experiments and their application to backbone and side chain sites of amino acids and peptides. , 1999, Journal of magnetic resonance.

[16]  S. Opella,et al.  Three-dimensional 13C shift/1H-15N coupling/15N shift solid-state NMR correlation spectroscopy. , 1999, Journal of magnetic resonance.

[17]  M. Hong,et al.  Selective and extensive 13C labeling of a membrane protein for solid-state NMR investigations , 1999, Journal of biomolecular NMR.

[18]  S. Opella,et al.  Solid-state NMR triple-resonance backbone assignments in a protein , 1999, Journal of biomolecular NMR.

[19]  and David M. LeMaster,et al.  Dynamical Mapping of E. coli Thioredoxin via 13C NMR Relaxation Analysis , 1996 .

[20]  S. Opella,et al.  fd coat protein structure in membrane environments. , 1993, Journal of molecular biology.

[21]  C. Fierke,et al.  Uniform 13C isotope labeling of proteins with sodium acetate for NMR studies: application to human carbonic anhydrase II. , 1991, Biochemistry.

[22]  B. Oh,et al.  Protein carbon-13 spin systems by a single two-dimensional nuclear magnetic resonance experiment. , 1988, Science.

[23]  D. M. Schneider,et al.  High-resolution solid-state triple nuclear magnetic resonance measurement of 13C15N dipole-dipole couplings , 1987 .

[24]  S. Opella,et al.  Strategy for nitrogen NMR analysis of biopolymers , 1982 .

[25]  U. Haeberlen,et al.  Approach to High-Resolution nmr in Solids , 1968 .

[26]  C. G. Hoogstraten,et al.  Metabolic labeling: Taking advantage of bacterial pathways to prepare spectroscopically useful isotope patterns in proteins and nucleic acids , 2008 .