Optimization of Model Reference Adaptive Controller for the Inverted Pendulum System Using CCPSO and DE Algorithms

The main aim of this paper is to propose two variants of bio-inspired algorithm, Constriction Coefficient Particle Swarm Optimization (CCPSO) and Differential Evolution (DE), which determine optimal parameters of Proportional-Integral-Derivative (PID) controller. To achieve this purpose, the PID controller has been plugged to the Model Reference Adaptive Controller (MRAC) that balances Inverted Pendulum (IP) with nonlinear characteristic in vertical-upright position. For comparison purpose, efficiency of these intelligent approaches to adjust MRAC parameters has been evaluated in terms of time response performance. Finally, the overall simulation results demonstrate that both the algorithms yield acceptable response in controlling the nonlinear model of IP system. However, the performance of DE algorithm is better than CCPSO in terms of transient response characteristics.

[1]  Rajesh Kumar Nema,et al.  Comparative Analysis of MIT Rule and Lyapunov Rule in Model Reference Adaptive Control Scheme , 2011 .

[2]  Dominique Bonvin,et al.  Global stabilization of an inverted pendulum-Control strategy and experimental verification , 2009, Autom..

[3]  Boris Tovornik,et al.  Swinging up and stabilization of a real inverted pendulum , 2006, IEEE Transactions on Industrial Electronics.

[4]  S. M. Abd-Elazim,et al.  Optimal PID Tuning for Load Frequency Control Using Bacteria Foraging Optimization Algorithm , 2010 .

[5]  Raktim Bhattacharya,et al.  Linear quadratic regulation of systems with stochastic parameter uncertainties , 2009, Autom..

[6]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[7]  R. Anita,et al.  ROBUST MODEL REFERENCE ADAPTIVE PI CONTROL , 2010 .

[8]  A. Zinober,et al.  Adaptive Control: the Model Reference Approach , 1980 .

[9]  Tao Zhang,et al.  Model Reference Adaptive Control for Perforated Mill , 2012, EMEIT 2012.

[10]  John Douglas Birdwell,et al.  Fuzzy logic-based PID autotuner design using simulated annealing , 1994, Proceedings of IEEE Symposium on Computer-Aided Control Systems Design (CACSD).

[11]  K. R. Krishnanand,et al.  Modified differential evolution optimization algorithm for multi-constraint optimal power flow , 2011, 2011 International Conference on Energy, Automation and Signal.

[12]  Manukid Parnichkun,et al.  Real-Time Optimal Control for Rotary Inverted Pendulum , 2009 .

[13]  Maurice Clerc,et al.  The particle swarm - explosion, stability, and convergence in a multidimensional complex space , 2002, IEEE Trans. Evol. Comput..

[14]  A. Visioli Tuning of PID controllers with fuzzy logic , 2001 .

[15]  Kirsten Morris,et al.  Friction and the Inverted Pendulum Stabilization Problem , 2008 .

[16]  J. G. Ziegler,et al.  Optimum Settings for Automatic Controllers , 1942, Journal of Fluids Engineering.

[17]  Shailja Shukla,et al.  Application of MRAC techniques to the PID Controller for nonlinear Magnetic Levitation system using Kalman filter , 2012 .

[18]  Amit Konar,et al.  Particle Swarm Optimization and Differential Evolution Algorithms: Technical Analysis, Applications and Hybridization Perspectives , 2008, Advances of Computational Intelligence in Industrial Systems.

[19]  Iraj Hassanzadeh,et al.  PSO-Based Controller Design for Rotary Inverted Pendulum System , 2008 .

[20]  Zhang Huaqing,et al.  PID Controller Optimization by GA and Its Performances on the Electro-hydraulic Servo Control System , 2008 .

[21]  Elham Yazdani Bejarbaneh PID Controller Optimization for Rotational Inverted Pendulum System Using Particle ‎Swarm Optimization and Differential Evolution Algorithms ‎ , 2015 .

[22]  O. Tolga Altinoz,et al.  Chaos Particle Swarm Optimized PID Controller for the Inverted Pendulum System , 2010 .

[23]  Kevin M. Passino,et al.  Biomimicry of bacterial foraging for distributed optimization and control , 2002 .

[24]  I. Hassanzadeh,et al.  GA based input-output feedback linearization controller for rotary inverted pendulum system , 2008, 2008 5th International Symposium on Mechatronics and Its Applications.

[25]  Rainer Storn,et al.  Differential Evolution-A simple evolution strategy for fast optimization , 1997 .