Improving the search performance of SHADE using linear population size reduction

SHADE is an adaptive DE which incorporates success-history based parameter adaptation and one of the state-of-the-art DE algorithms. This paper proposes L-SHADE, which further extends SHADE with Linear Population Size Reduction (LPSR), which continually decreases the population size according to a linear function. We evaluated the performance of L-SHADE on CEC2014 benchmarks and compared its search performance with state-of-the-art DE algorithms, as well as the state-of-the-art restart CMA-ES variants. The experimental results show that L-SHADE is quite competitive with state-of-the-art evolutionary algorithms.

[1]  Alex S. Fukunaga,et al.  Evaluating the performance of SHADE on CEC 2013 benchmark problems , 2013, 2013 IEEE Congress on Evolutionary Computation.

[2]  Ilya Loshchilov,et al.  CMA-ES with restarts for solving CEC 2013 benchmark problems , 2013, 2013 IEEE Congress on Evolutionary Computation.

[3]  Janez Brest,et al.  Population size reduction for the differential evolution algorithm , 2008, Applied Intelligence.

[4]  Ponnuthurai Nagaratnam Suganthan,et al.  Problem Definitions and Evaluation Criteria for the CEC 2014 Special Session and Competition on Single Objective Real-Parameter Numerical Optimization , 2014 .

[5]  Alex S. Fukunaga,et al.  On the pathological behavior of adaptive differential evolution on hybrid objective functions , 2014, GECCO.

[6]  Nikolaus Hansen,et al.  A restart CMA evolution strategy with increasing population size , 2005, 2005 IEEE Congress on Evolutionary Computation.

[7]  Mehmet Fatih Tasgetiren,et al.  Differential evolution algorithm with ensemble of parameters and mutation strategies , 2011, Appl. Soft Comput..

[8]  Andreas Griewank,et al.  On the unconstrained optimization of partially separable functions , 1982 .

[9]  Cláudio F. Lima,et al.  A review of adaptive population sizing schemes in genetic algorithms , 2005, GECCO '05.

[10]  Thomas Stützle,et al.  Benchmark results for a simple hybrid algorithm on the CEC 2013 benchmark set for real-parameter optimization , 2013, 2013 IEEE Congress on Evolutionary Computation.

[11]  Christian Gagné,et al.  Improving genetic algorithms performance via deterministic population shrinkage , 2009, GECCO.

[12]  Nikolaus Hansen,et al.  Benchmarking a BI-population CMA-ES on the BBOB-2009 function testbed , 2009, GECCO '09.

[13]  Xiaodong Li,et al.  Benchmark Functions for the CEC'2010 Special Session and Competition on Large-Scale , 2009 .

[14]  Qingfu Zhang,et al.  Differential Evolution With Composite Trial Vector Generation Strategies and Control Parameters , 2011, IEEE Transactions on Evolutionary Computation.

[15]  Tad Hogg,et al.  An Economics Approach to Hard Computational Problems , 1997, Science.

[16]  Arthur C. Sanderson,et al.  JADE: Adaptive Differential Evolution With Optional External Archive , 2009, IEEE Transactions on Evolutionary Computation.

[17]  Alex S. Fukunaga,et al.  Success-history based parameter adaptation for Differential Evolution , 2013, 2013 IEEE Congress on Evolutionary Computation.

[18]  Thomas Stützle,et al.  Incremental Social Learning in Particle Swarms , 2011, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[19]  Jing J. Liang,et al.  Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization , 2005 .

[20]  Janez Brest,et al.  Self-Adapting Control Parameters in Differential Evolution: A Comparative Study on Numerical Benchmark Problems , 2006, IEEE Transactions on Evolutionary Computation.

[21]  Thomas Stützle,et al.  A Note on Bound Constraints Handling for the IEEE CEC’05 Benchmark Function Suite , 2014, Evolutionary Computation.

[22]  Zbigniew Michalewicz,et al.  GAVaPS-a genetic algorithm with varying population size , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[23]  P. N. Suganthan,et al.  Differential Evolution Algorithm With Strategy Adaptation for Global Numerical Optimization , 2009, IEEE Transactions on Evolutionary Computation.

[24]  Carlos García-Martínez,et al.  Global and local real-coded genetic algorithms based on parent-centric crossover operators , 2008, Eur. J. Oper. Res..

[25]  P. N. Suganthan,et al.  Differential Evolution: A Survey of the State-of-the-Art , 2011, IEEE Transactions on Evolutionary Computation.

[26]  Fei Peng,et al.  Multi-start JADE with knowledge transfer for numerical optimization , 2009, IEEE Congress on Evolutionary Computation.

[27]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..