Improving the search performance of SHADE using linear population size reduction
暂无分享,去创建一个
[1] Alex S. Fukunaga,et al. Evaluating the performance of SHADE on CEC 2013 benchmark problems , 2013, 2013 IEEE Congress on Evolutionary Computation.
[2] Ilya Loshchilov,et al. CMA-ES with restarts for solving CEC 2013 benchmark problems , 2013, 2013 IEEE Congress on Evolutionary Computation.
[3] Janez Brest,et al. Population size reduction for the differential evolution algorithm , 2008, Applied Intelligence.
[4] Ponnuthurai Nagaratnam Suganthan,et al. Problem Definitions and Evaluation Criteria for the CEC 2014 Special Session and Competition on Single Objective Real-Parameter Numerical Optimization , 2014 .
[5] Alex S. Fukunaga,et al. On the pathological behavior of adaptive differential evolution on hybrid objective functions , 2014, GECCO.
[6] Nikolaus Hansen,et al. A restart CMA evolution strategy with increasing population size , 2005, 2005 IEEE Congress on Evolutionary Computation.
[7] Mehmet Fatih Tasgetiren,et al. Differential evolution algorithm with ensemble of parameters and mutation strategies , 2011, Appl. Soft Comput..
[8] Andreas Griewank,et al. On the unconstrained optimization of partially separable functions , 1982 .
[9] Cláudio F. Lima,et al. A review of adaptive population sizing schemes in genetic algorithms , 2005, GECCO '05.
[10] Thomas Stützle,et al. Benchmark results for a simple hybrid algorithm on the CEC 2013 benchmark set for real-parameter optimization , 2013, 2013 IEEE Congress on Evolutionary Computation.
[11] Christian Gagné,et al. Improving genetic algorithms performance via deterministic population shrinkage , 2009, GECCO.
[12] Nikolaus Hansen,et al. Benchmarking a BI-population CMA-ES on the BBOB-2009 function testbed , 2009, GECCO '09.
[13] Xiaodong Li,et al. Benchmark Functions for the CEC'2010 Special Session and Competition on Large-Scale , 2009 .
[14] Qingfu Zhang,et al. Differential Evolution With Composite Trial Vector Generation Strategies and Control Parameters , 2011, IEEE Transactions on Evolutionary Computation.
[15] Tad Hogg,et al. An Economics Approach to Hard Computational Problems , 1997, Science.
[16] Arthur C. Sanderson,et al. JADE: Adaptive Differential Evolution With Optional External Archive , 2009, IEEE Transactions on Evolutionary Computation.
[17] Alex S. Fukunaga,et al. Success-history based parameter adaptation for Differential Evolution , 2013, 2013 IEEE Congress on Evolutionary Computation.
[18] Thomas Stützle,et al. Incremental Social Learning in Particle Swarms , 2011, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).
[19] Jing J. Liang,et al. Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization , 2005 .
[20] Janez Brest,et al. Self-Adapting Control Parameters in Differential Evolution: A Comparative Study on Numerical Benchmark Problems , 2006, IEEE Transactions on Evolutionary Computation.
[21] Thomas Stützle,et al. A Note on Bound Constraints Handling for the IEEE CEC’05 Benchmark Function Suite , 2014, Evolutionary Computation.
[22] Zbigniew Michalewicz,et al. GAVaPS-a genetic algorithm with varying population size , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.
[23] P. N. Suganthan,et al. Differential Evolution Algorithm With Strategy Adaptation for Global Numerical Optimization , 2009, IEEE Transactions on Evolutionary Computation.
[24] Carlos García-Martínez,et al. Global and local real-coded genetic algorithms based on parent-centric crossover operators , 2008, Eur. J. Oper. Res..
[25] P. N. Suganthan,et al. Differential Evolution: A Survey of the State-of-the-Art , 2011, IEEE Transactions on Evolutionary Computation.
[26] Fei Peng,et al. Multi-start JADE with knowledge transfer for numerical optimization , 2009, IEEE Congress on Evolutionary Computation.
[27] Rainer Storn,et al. Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..