A Robust Affine Invariant Metric on Boundary Patterns

Affine invariant pattern metrics are useful for shape recognition. It is important that such a metric is robust for various defects. We formalize these types of robustness using four axioms. Then, we present the reflection metric. This is an affine invariant metric defined for the large family of "boundary patterns". A boundary pattern is a finite union of n-1 dimensional algebraic surface patches in ℝn. Such a pattern may have multiple connected components. We prove that the reflection metric satisfies the four robustness axioms.

[1]  M. Hagedoorn,et al.  Reliable and e cient pattern matching using an a ne invariant metric , 1997 .

[2]  Daniel P. Huttenlocher,et al.  A multi-resolution technique for comparing images using the Hausdorff distance , 1993, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[3]  Daniel P. Huttenlocher,et al.  Comparing Images Using the Hausdorff Distance , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Remco C. Veltkamp,et al.  New visibility partitions with applications in affine pattern matching , 1999 .

[5]  Helmut Alt,et al.  Computing the Fréchet distance between two polygonal curves , 1995, Int. J. Comput. Geom. Appl..

[6]  Daniel P. Huttenlocher,et al.  Computing the minimum Hausdorff distance for point sets under translation , 1990, SCG '90.

[7]  Gerald Weber,et al.  Matching Convex Shapes with Respect to the Symmetric Difference , 1996, ESA.

[8]  lawa Kanas,et al.  Metric Spaces , 2020, An Introduction to Functional Analysis.

[9]  Remco C. Veltkamp,et al.  A general method for partial point set matching , 1997, SCG '97.

[10]  Micha Sharir,et al.  The upper envelope of voronoi surfaces and its applications , 1993, Discret. Comput. Geom..

[11]  Günter Rote,et al.  Matching shapes with a reference point , 1994, SCG '94.

[12]  Leonidas J. Guibas,et al.  Partial matching of planar polylines under similarity transformations , 1997, SODA '97.

[13]  William Rucklidge,et al.  Efficient Visual Recognition Using the Hausdorff Distance , 1996, Lecture Notes in Computer Science.