A Robust Affine Invariant Metric on Boundary Patterns
暂无分享,去创建一个
[1] M. Hagedoorn,et al. Reliable and e cient pattern matching using an a ne invariant metric , 1997 .
[2] Daniel P. Huttenlocher,et al. A multi-resolution technique for comparing images using the Hausdorff distance , 1993, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.
[3] Daniel P. Huttenlocher,et al. Comparing Images Using the Hausdorff Distance , 1993, IEEE Trans. Pattern Anal. Mach. Intell..
[4] Remco C. Veltkamp,et al. New visibility partitions with applications in affine pattern matching , 1999 .
[5] Helmut Alt,et al. Computing the Fréchet distance between two polygonal curves , 1995, Int. J. Comput. Geom. Appl..
[6] Daniel P. Huttenlocher,et al. Computing the minimum Hausdorff distance for point sets under translation , 1990, SCG '90.
[7] Gerald Weber,et al. Matching Convex Shapes with Respect to the Symmetric Difference , 1996, ESA.
[8] lawa Kanas,et al. Metric Spaces , 2020, An Introduction to Functional Analysis.
[9] Remco C. Veltkamp,et al. A general method for partial point set matching , 1997, SCG '97.
[10] Micha Sharir,et al. The upper envelope of voronoi surfaces and its applications , 1993, Discret. Comput. Geom..
[11] Günter Rote,et al. Matching shapes with a reference point , 1994, SCG '94.
[12] Leonidas J. Guibas,et al. Partial matching of planar polylines under similarity transformations , 1997, SODA '97.
[13] William Rucklidge,et al. Efficient Visual Recognition Using the Hausdorff Distance , 1996, Lecture Notes in Computer Science.