Matrix Toda and Volterra lattices

Abstract We consider matrix Toda and Volterra lattice equations and their relation with matrix biorthogonal polynomials. From that relation, we give a method for constructing a new solution of these systems from another given one. An illustrative example is presented.

[1]  K. M. Tamizhmani,et al.  On solutions to the non-Abelian Hirota–Miwa equation and its continuum limits , 2008, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[2]  F. Peherstorfer On Toda lattices and orthogonal polynomials , 2001 .

[3]  J. Nimmo,et al.  Darboux transformations for a twisted derivation and quasideterminant solutions to the super KdV equation , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[4]  A. V. Mikhaĭlov,et al.  Integrability of the two-dimensional generalization of Toda chain , 1979 .

[5]  F. Marcellán,et al.  Toda-type differential equations for the recurrence coefficients of orthogonal polynomials and Freud transformation , 1997 .

[6]  A. Zhedanov,et al.  Discrete-time Volterra chain and classical orthogonal polynomials , 1997 .

[7]  J. Nimmo,et al.  Quasideterminant solutions of a non-Abelian Toda lattice and kink solutions of a matrix sine-Gordon equation , 2007, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[8]  Spectrum and Generation of Solutions of the Toda Lattice , 2009 .

[9]  Alexei Zhedanov,et al.  Discrete Darboux transformations, the discrete-time Toda lattice, and the Askey-Wilson polynomials , 1994 .

[10]  M. Sakakibara LETTER TO THE EDITOR: Factorization methods for noncommutative KP and Toda hierarchy , 2004, nlin/0408002.

[11]  J. C. Garc'ia-Ardila,et al.  Christoffel transformations for matrix orthogonal polynomials in the real line and the non-Abelian 2D Toda lattice hierarchy , 2015, 1511.04771.

[12]  J. Nimmo,et al.  Quasideterminant solutions of a non-Abelian Hirota–Miwa equation , 2007, nlin/0702020.

[13]  Erik Koelink,et al.  Matrix valued Hermite polynomials, Burchnall formulas and non-abelian Toda lattice , 2018, Adv. Appl. Math..

[14]  G. Shilov,et al.  Generalized Functions, Volume 1: Properties and Operations , 1967 .

[15]  Pavel Etingof,et al.  Factorization of differential operators, quasideterminants, and nonabelian Toda field equations , 1997 .

[16]  Towards Noncommutative Integrable Systems , 2002, hep-th/0211148.

[17]  J. Nimmo,et al.  On a direct approach to quasideterminant solutions of a noncommutative KP equation , 2007, 0711.3733.

[18]  A. F. Moreno,et al.  Dynamics and interpretation of some integrable systems via multiple orthogonal polynomials , 2010 .

[19]  T. Chihara,et al.  An Introduction to Orthogonal Polynomials , 1979 .

[20]  A. Branquinho,et al.  Complex high order Toda and Volterra lattices1 , 2009 .

[21]  B. Simon,et al.  On the Toda and Kac-van Moerbeke Systems , 2022 .

[22]  Francisco Marcellán,et al.  Darboux transformation and perturbation of linear functionals , 2004 .

[23]  R. Willox,et al.  Darboux transformations for the two-dimensional Toda system , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.