Matrix Toda and Volterra lattices
暂无分享,去创建一个
Amílcar Branquinho | Ana Pilar Foulquié Moreno | Juan C. García-Ardila | J. C. García-Ardila | A. F. Moreno | A. Branquinho
[1] K. M. Tamizhmani,et al. On solutions to the non-Abelian Hirota–Miwa equation and its continuum limits , 2008, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[2] F. Peherstorfer. On Toda lattices and orthogonal polynomials , 2001 .
[3] J. Nimmo,et al. Darboux transformations for a twisted derivation and quasideterminant solutions to the super KdV equation , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[4] A. V. Mikhaĭlov,et al. Integrability of the two-dimensional generalization of Toda chain , 1979 .
[5] F. Marcellán,et al. Toda-type differential equations for the recurrence coefficients of orthogonal polynomials and Freud transformation , 1997 .
[6] A. Zhedanov,et al. Discrete-time Volterra chain and classical orthogonal polynomials , 1997 .
[7] J. Nimmo,et al. Quasideterminant solutions of a non-Abelian Toda lattice and kink solutions of a matrix sine-Gordon equation , 2007, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[8] Spectrum and Generation of Solutions of the Toda Lattice , 2009 .
[9] Alexei Zhedanov,et al. Discrete Darboux transformations, the discrete-time Toda lattice, and the Askey-Wilson polynomials , 1994 .
[10] M. Sakakibara. LETTER TO THE EDITOR: Factorization methods for noncommutative KP and Toda hierarchy , 2004, nlin/0408002.
[11] J. C. Garc'ia-Ardila,et al. Christoffel transformations for matrix orthogonal polynomials in the real line and the non-Abelian 2D Toda lattice hierarchy , 2015, 1511.04771.
[12] J. Nimmo,et al. Quasideterminant solutions of a non-Abelian Hirota–Miwa equation , 2007, nlin/0702020.
[13] Erik Koelink,et al. Matrix valued Hermite polynomials, Burchnall formulas and non-abelian Toda lattice , 2018, Adv. Appl. Math..
[14] G. Shilov,et al. Generalized Functions, Volume 1: Properties and Operations , 1967 .
[15] Pavel Etingof,et al. Factorization of differential operators, quasideterminants, and nonabelian Toda field equations , 1997 .
[16] Towards Noncommutative Integrable Systems , 2002, hep-th/0211148.
[17] J. Nimmo,et al. On a direct approach to quasideterminant solutions of a noncommutative KP equation , 2007, 0711.3733.
[18] A. F. Moreno,et al. Dynamics and interpretation of some integrable systems via multiple orthogonal polynomials , 2010 .
[19] T. Chihara,et al. An Introduction to Orthogonal Polynomials , 1979 .
[20] A. Branquinho,et al. Complex high order Toda and Volterra lattices1 , 2009 .
[21] B. Simon,et al. On the Toda and Kac-van Moerbeke Systems , 2022 .
[22] Francisco Marcellán,et al. Darboux transformation and perturbation of linear functionals , 2004 .
[23] R. Willox,et al. Darboux transformations for the two-dimensional Toda system , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.