Model of a hybrid processor executing C++ with additional quantum functions

Display Omitted Provide a VHDL simulation model of a hybrid quantum/classical processor.Provide a processor capable of executing classical and quantum programs.Provide an assembler to interpret both classical and quantum assembly instructions.Provide C++ libraries to develop quantum algorithms within classical programs.Test the whole framework to show it can implement quantum algorithms correctly. The objective of this paper is to model a hybrid quantum processor capable of executing both classical and quantum instructions. The processor is modeled and simulated using VHDL. It consists of a MIPS R2000 processor with a quantum processing module embedded within it. Additionally, an assembler has been developed capable of interpreting assembly programs modeling quantum algorithms or circuits, containing instructions from both the standard MIPS instruction set as well as the Quantum Assembly (QASM) instruction set. Furthermore, a quantum C++ library has been developed, with methods and classes to encapsulate the QASM instructions so that a programmer may use it to develop a C++ program implementing a quantum algorithm containing both classical and quantum parts.

[1]  Andrew W. Cross Synthesis and evaluation of fault-tolerant quantum computer architectures , 2005 .

[2]  J. P. Home,et al.  Realization of a programmable two-qubit quantum processor , 2009, 0908.3031.

[3]  E. Knill,et al.  Conventions for quantum pseudocode , 1996, 2211.02559.

[4]  Charles H. Bennett,et al.  Logical reversibility of computation , 1973 .

[5]  Maarten Van den Nest,et al.  Simulating quantum computers with probabilistic methods , 2009, Quantum Inf. Comput..

[6]  A. Politi,et al.  Manipulation of multiphoton entanglement in waveguide quantum circuits , 2009, 0911.1257.

[7]  Alfred V. Aho,et al.  A layered software architecture for quantum computing design tools , 2006, Computer.

[8]  Mircea Vladutiu,et al.  Using HDLs for describing quantum circuits: a framework for efficient quantum algorithm simulation , 2004, CF '04.

[9]  Jerzy Karczmarczuk,et al.  Structure and interpretation of quantum mechanics: a functional framework , 2003, Haskell '03.

[10]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[11]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[12]  Morteza Saheb Zamani,et al.  FPGA-Based Circuit Model Emulation of Quantum Algorithms , 2008, 2008 IEEE Computer Society Annual Symposium on VLSI.

[13]  Andrew W. Cross,et al.  Fault-tolerant quantum computer architectures using hierarchies of quantum error-correcting codes , 2008 .

[14]  Rodney Van Meter,et al.  A blueprint for building a quantum computer , 2013, Commun. ACM.

[15]  Peter Selinger,et al.  A Brief Survey of Quantum Programming Languages , 2004, FLOPS.

[16]  Bernhard Ömer,et al.  Quantum Programming in QCL , 2000 .

[17]  Alison Wright,et al.  String theory: Stringlish lessons , 2008 .

[18]  Frederic T. Chong,et al.  Datapath and control for quantum wires , 2004, TACO.

[19]  R. Hughes,et al.  The Structure and Interpretation of Quantum Mechanics , 1989 .

[20]  John P. Hayes,et al.  Quantum Circuit Simulation , 2009 .

[21]  Philip Maymin Extending the Lambda Calculus to Express Randomized and Quantumized Algorithms , 1996 .

[22]  Amr Sabry,et al.  Modeling quantum computing in Haskell , 2003, Haskell '03.

[23]  Martin Lukac,et al.  Evolving Quantum Circuits and an FPGA-based Quantum Computing Emulator , 2002 .

[24]  Jonathan P Dowling,et al.  Quantum technology: the second quantum revolution , 2003, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[25]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[26]  Paolo Zuliani Logical reversibility , 2001, IBM J. Res. Dev..

[27]  M. Watheq El-Kharashi,et al.  Modeling a quantum processor using the QRAM model , 2011, Proceedings of 2011 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing.

[28]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[29]  Frederic T. Chong,et al.  A Practical Architecture for Reliable Quantum Computers , 2002, Computer.

[30]  John Kubiatowicz,et al.  A fault tolerant, area efficient architecture for Shor's factoring algorithm , 2009, ISCA '09.

[31]  D. Deutsch,et al.  Rapid solution of problems by quantum computation , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[32]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[33]  Zuriati Ahmad Zukarnain,et al.  A hybrid architecture approach for quantum algorithms. , 2009 .

[34]  Mircea Vladutiu,et al.  The bubble bit technique as improvement of HDL-based quantum circuits simulation , 2005, 38th Annual Simulation Symposium.

[35]  Luciano Serafini,et al.  Toward an architecture for quantum programming , 2001, cs/0103009.

[36]  Mark Oskin,et al.  Architectural implications of quantum computing technologies , 2006, ACM J. Emerg. Technol. Comput. Syst..

[37]  J. Mullins The topsy turvy world of quantum computing , 2001 .

[38]  Krysta Marie Svore,et al.  A 2D nearest-neighbor quantum architecture for factoring in polylogarithmic depth , 2012, Quantum Inf. Comput..

[39]  Katarzyna Radecka,et al.  FPGA emulation of quantum circuits , 2004, IEEE International Conference on Computer Design: VLSI in Computers and Processors, 2004. ICCD 2004. Proceedings..