Determination of Activation Energies and the Optimum Temperatures of Hydrolysis of Starch by α-Amylase from Porcine Pancreas
暂无分享,去创建一个
[1] J. Oszmiański,et al. Evaluation of Innovative Dried Purée from Jerusalem Artichoke—In Vitro Studies of Its Physicochemical and Health-Promoting Properties , 2021, Molecules.
[2] J. Miłek. Application of the new method to determine the activation energies and optimum temperatures of inulin hydrolysis by exo-inulinases Aspergillus niger , 2021, Journal of Thermal Analysis and Calorimetry.
[3] J. Miłek. Wyznaczanie energii aktywacji oraz optymalnej temperatury reakcji hydrolizy palmitynianu p-nitrofenylu katalizowanej przez lipazy , 2021 .
[4] V. Khlestkin,et al. Different Reactivity of Raw Starch from Diverse Potato Genotypes , 2021, Molecules.
[5] J. Miłek. The effect of pH on determination of activation energies and the optimum temperatures of hydrolysis of olive oil by lipase from porcine pancreas. , 2021, Acta of bioengineering and biomechanics.
[6] M. Zahoor,et al. Curative Effect of Catechin Isolated from Elaeagnus Umbellata Thunb. Berries for Diabetes and Related Complications in Streptozotocin-Induced Diabetic Rats Model , 2020, Molecules.
[7] A. Ismail,et al. Identification of Dipeptidyl Peptidase-4 and α-Amylase Inhibitors from Melicope glabra (Blume) T. G. Hartley (Rutaceae) Using Liquid Chromatography Tandem Mass Spectrometry, In Vitro and In Silico Methods , 2020, Molecules.
[8] P. Kornprat,et al. The Lipase/Amylase Ratio (LAR) in Peripheral Blood Might Represent a Novel Prognostic Marker in Patients with Surgically Resectable Pancreatic Cancer , 2020, Cancers.
[9] J. Miłek. Wyznaczanie energii aktywacji oraz optymalnej temperatury dla reakcji hydrolizy skrobi katalizowanej przez α-amylazę z Bacillus licheniformis , 2020, PRZEMYSŁ CHEMICZNY.
[10] J. Miłek. Thermodynamics and kinetics of thermal deactivation of catalase Aspergillus niger , 2020 .
[11] J. Miłek. Obliczanie temperatury optymalnej oraz energii aktywacji i dezaktywacji dla reakcji hydrolizy oleju z oliwek przez lipazę z trzustki wieprzowej , 2020 .
[12] J. Miłek. Determination of optimum temperatures and activation energies of inulin hydrolysis by endo-inulinase Aspergillus niger , 2020 .
[13] A. Ademakinwa,et al. Optimization of aqueous two-phase partitioning of Aureobasidium pullulans α-amylase via response surface methodology and investigation of its thermodynamic and kinetic properties. , 2019, International journal of biological macromolecules.
[14] Donghong Liu,et al. Inhibitory kinetics and mechanism of flavonoids from lotus (Nelumbo nucifera Gaertn.) leaf against pancreatic α-amylase. , 2018, International journal of biological macromolecules.
[15] Shiburaj Sugathan,et al. Amylases for Food Applications—Updated Information , 2018, Energy, Environment, and Sustainability.
[16] R. Fernández-Lafuente,et al. Evaluation of Strategies to Produce Highly Porous Cross-Linked Aggregates of Porcine Pancreas Lipase with Magnetic Properties , 2018, Molecules.
[17] J. Miłek. ESTIMATION OF THE KINETIC PARAMETERS FOR H2O2 ENZYMATIC DECOMPOSITION AND FOR CATALASE DEACTIVATION , 2018, Brazilian Journal of Chemical Engineering.
[18] Wei He,et al. Comparison of Physicochemical Properties of Starches from Flesh and Peel of Green Banana Fruit , 2018, Molecules.
[19] Max K. Leong,et al. Hypoglycemic Efficacy of Docking Selected Natural Compounds against α-Glucosidase and α-Amylase , 2018, Molecules.
[20] Lingshang Lin,et al. Comparison of Structural and Functional Properties of Starches from the Rhizome and Bulbil of Chinese Yam (Dioscorea opposita Thunb.) , 2018, Molecules.
[21] R. S. Conlan,et al. Clinical applications of amylase: Novel perspectives. , 2016, Surgery.
[22] J. Qian,et al. Covalent immobilization of α-amylase on magnetic particles as catalyst for hydrolysis of high-amylose starch. , 2016, International journal of biological macromolecules.
[23] G. Absalan,et al. Efficient Immobilization of Porcine Pancreatic α-Amylase on Amino-Functionalized Magnetite Nanoparticles: Characterization and Stability Evaluation of the Immobilized Enzyme , 2016, Applied Biochemistry and Biotechnology.
[24] M. Wójcik,et al. A new method to determine optimum temperature and activation energies for enzymatic reactions , 2016, Bioprocess and Biosystems Engineering.
[25] G. Feller,et al. Temperature adaptations in psychrophilic, mesophilic and thermophilic chloride-dependent alpha-amylases. , 2012, Biochimie.
[26] Gao-Qiang Liu,et al. Effect of Cross-Linking and Enzymatic Hydrolysis Composite Modification on the Properties of Rice Starches , 2012, Molecules.
[27] A. Azam,et al. Immobilization of porcine pancreatic α-amylase on magnetic Fe2O3 nanoparticles: Applications to the hydrolysis of starch , 2012, Biotechnology and Bioprocess Engineering.
[28] Y. Gargouri,et al. Digestive amylase of a primitive animal, the scorpion: purification and biochemical characterization. , 2010, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.
[29] F. Adnan,et al. KINETICS AND THERMODYNAMIC STUDIES OF ALPHA AMYLASE FROM BACILLUS LICHENIFORMIS MUTANT , 2010 .
[30] G. Muralikrishna,et al. Porcine Pancreatic α-Amylase and its Isoforms: Purification and Kinetic Studies , 2009 .
[31] J. Albani. Starch Hydrolysis by Amylase , 2008 .
[32] S. R. Couto,et al. Application of solid-state fermentation to food industry—A review , 2006 .
[33] B. Özbek,et al. α-Amylase inactivation by temperature during starch hydrolysis. , 2004 .
[34] G. Feller,et al. Activity-Stability Relationships in Extremophilic Enzymes* , 2003, The Journal of Biological Chemistry.
[35] S. Aksoy,et al. Stability of α-amylase immobilized on poly(methyl methacrylate-acrylic acid) microspheres , 1998 .
[36] G. L. Miller. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar , 1959 .