Determination of Activation Energies and the Optimum Temperatures of Hydrolysis of Starch by α-Amylase from Porcine Pancreas

The present paper reports the determination of the activation energies and the optimum temperatures of starch hydrolysis by porcine pancreas α-amylase. The parameters were estimated based on the literature data on the activity curves versus temperature for starch hydrolysis by α-amylase from porcine pancreas. It was assumed that both the hydrolysis reaction process and the deactivation process of α-amylase were first-order reactions by the enzyme concentration. A mathematical model describing the effect of temperature on porcine pancreas α-amylase activity was used. The determine deactivation energies Ea were from 19.82 ± 7.22 kJ/mol to 128.80 ± 9.27 kJ/mol, the obtained optimum temperatures Topt were in the range from 311.06 ± 1.10 K to 326.52 ± 1.75 K. In turn, the values of deactivation energies Ed has been noted in the range from 123.57 ± 14.17 kJ/mol to 209.37 ± 5.17 kJ/mol. The present study is related to the starch hydrolysis by α-amylase. In the industry, the obtained results the values Ea, Ed, Topt can be used to design and optimize starch hydrolysis by α-amylase porcine pancreas. The obtained results might also find application in research on the pharmaceutical preparations used to treat pancreatic insufficiency or prognosis of pancreatic cancer.

[1]  J. Oszmiański,et al.  Evaluation of Innovative Dried Purée from Jerusalem Artichoke—In Vitro Studies of Its Physicochemical and Health-Promoting Properties , 2021, Molecules.

[2]  J. Miłek Application of the new method to determine the activation energies and optimum temperatures of inulin hydrolysis by exo-inulinases Aspergillus niger , 2021, Journal of Thermal Analysis and Calorimetry.

[3]  J. Miłek Wyznaczanie energii aktywacji oraz optymalnej temperatury reakcji hydrolizy palmitynianu p-nitrofenylu katalizowanej przez lipazy , 2021 .

[4]  V. Khlestkin,et al.  Different Reactivity of Raw Starch from Diverse Potato Genotypes , 2021, Molecules.

[5]  J. Miłek The effect of pH on determination of activation energies and the optimum temperatures of hydrolysis of olive oil by lipase from porcine pancreas. , 2021, Acta of bioengineering and biomechanics.

[6]  M. Zahoor,et al.  Curative Effect of Catechin Isolated from Elaeagnus Umbellata Thunb. Berries for Diabetes and Related Complications in Streptozotocin-Induced Diabetic Rats Model , 2020, Molecules.

[7]  A. Ismail,et al.  Identification of Dipeptidyl Peptidase-4 and α-Amylase Inhibitors from Melicope glabra (Blume) T. G. Hartley (Rutaceae) Using Liquid Chromatography Tandem Mass Spectrometry, In Vitro and In Silico Methods , 2020, Molecules.

[8]  P. Kornprat,et al.  The Lipase/Amylase Ratio (LAR) in Peripheral Blood Might Represent a Novel Prognostic Marker in Patients with Surgically Resectable Pancreatic Cancer , 2020, Cancers.

[9]  J. Miłek Wyznaczanie energii aktywacji oraz optymalnej temperatury dla reakcji hydrolizy skrobi katalizowanej przez α-amylazę z Bacillus licheniformis , 2020, PRZEMYSŁ CHEMICZNY.

[10]  J. Miłek Thermodynamics and kinetics of thermal deactivation of catalase Aspergillus niger , 2020 .

[11]  J. Miłek Obliczanie temperatury optymalnej oraz energii aktywacji i dezaktywacji dla reakcji hydrolizy oleju z oliwek przez lipazę z trzustki wieprzowej , 2020 .

[12]  J. Miłek Determination of optimum temperatures and activation energies of inulin hydrolysis by endo-inulinase Aspergillus niger , 2020 .

[13]  A. Ademakinwa,et al.  Optimization of aqueous two-phase partitioning of Aureobasidium pullulans α-amylase via response surface methodology and investigation of its thermodynamic and kinetic properties. , 2019, International journal of biological macromolecules.

[14]  Donghong Liu,et al.  Inhibitory kinetics and mechanism of flavonoids from lotus (Nelumbo nucifera Gaertn.) leaf against pancreatic α-amylase. , 2018, International journal of biological macromolecules.

[15]  Shiburaj Sugathan,et al.  Amylases for Food Applications—Updated Information , 2018, Energy, Environment, and Sustainability.

[16]  R. Fernández-Lafuente,et al.  Evaluation of Strategies to Produce Highly Porous Cross-Linked Aggregates of Porcine Pancreas Lipase with Magnetic Properties , 2018, Molecules.

[17]  J. Miłek ESTIMATION OF THE KINETIC PARAMETERS FOR H2O2 ENZYMATIC DECOMPOSITION AND FOR CATALASE DEACTIVATION , 2018, Brazilian Journal of Chemical Engineering.

[18]  Wei He,et al.  Comparison of Physicochemical Properties of Starches from Flesh and Peel of Green Banana Fruit , 2018, Molecules.

[19]  Max K. Leong,et al.  Hypoglycemic Efficacy of Docking Selected Natural Compounds against α-Glucosidase and α-Amylase , 2018, Molecules.

[20]  Lingshang Lin,et al.  Comparison of Structural and Functional Properties of Starches from the Rhizome and Bulbil of Chinese Yam (Dioscorea opposita Thunb.) , 2018, Molecules.

[21]  R. S. Conlan,et al.  Clinical applications of amylase: Novel perspectives. , 2016, Surgery.

[22]  J. Qian,et al.  Covalent immobilization of α-amylase on magnetic particles as catalyst for hydrolysis of high-amylose starch. , 2016, International journal of biological macromolecules.

[23]  G. Absalan,et al.  Efficient Immobilization of Porcine Pancreatic α-Amylase on Amino-Functionalized Magnetite Nanoparticles: Characterization and Stability Evaluation of the Immobilized Enzyme , 2016, Applied Biochemistry and Biotechnology.

[24]  M. Wójcik,et al.  A new method to determine optimum temperature and activation energies for enzymatic reactions , 2016, Bioprocess and Biosystems Engineering.

[25]  G. Feller,et al.  Temperature adaptations in psychrophilic, mesophilic and thermophilic chloride-dependent alpha-amylases. , 2012, Biochimie.

[26]  Gao-Qiang Liu,et al.  Effect of Cross-Linking and Enzymatic Hydrolysis Composite Modification on the Properties of Rice Starches , 2012, Molecules.

[27]  A. Azam,et al.  Immobilization of porcine pancreatic α-amylase on magnetic Fe2O3 nanoparticles: Applications to the hydrolysis of starch , 2012, Biotechnology and Bioprocess Engineering.

[28]  Y. Gargouri,et al.  Digestive amylase of a primitive animal, the scorpion: purification and biochemical characterization. , 2010, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.

[29]  F. Adnan,et al.  KINETICS AND THERMODYNAMIC STUDIES OF ALPHA AMYLASE FROM BACILLUS LICHENIFORMIS MUTANT , 2010 .

[30]  G. Muralikrishna,et al.  Porcine Pancreatic α-Amylase and its Isoforms: Purification and Kinetic Studies , 2009 .

[31]  J. Albani Starch Hydrolysis by Amylase , 2008 .

[32]  S. R. Couto,et al.  Application of solid-state fermentation to food industry—A review , 2006 .

[33]  B. Özbek,et al.  α-Amylase inactivation by temperature during starch hydrolysis. , 2004 .

[34]  G. Feller,et al.  Activity-Stability Relationships in Extremophilic Enzymes* , 2003, The Journal of Biological Chemistry.

[35]  S. Aksoy,et al.  Stability of α-amylase immobilized on poly(methyl methacrylate-acrylic acid) microspheres , 1998 .

[36]  G. L. Miller Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar , 1959 .