FaCSI: A block parallel preconditioner for fluid-structure interaction in hemodynamics

Modeling Fluid-Structure Interaction (FSI) in the vascular system is mandatory to reliably compute mechanical indicators in vessels undergoing large deformations. In order to cope with the computational complexity of the coupled 3D FSI problem after discretizations in space and time, a parallel solution is often mandatory. In this paper we propose a new block parallel preconditioner for the coupled linearized FSI system obtained after space and time discretization. We name it FaCSI to indicate that it exploits the Factorized form of the linearized FSI matrix, the use of static Condensation to formally eliminate the interface degrees of freedom of the fluid equations, and the use of a SIMPLE preconditioner for saddle-point problems. FaCSI is built upon a block Gauss-Seidel factorization of the FSI Jacobian matrix and it uses ad-hoc preconditioners for each physical component of the coupled problem, namely the fluid, the structure and the geometry. In the fluid subproblem, after operating static condensation of the interface fluid variables, we use a SIMPLE preconditioner on the reduced fluid matrix. Moreover, to efficiently deal with a large number of processes, FaCSI exploits efficient single field preconditioners, e.g., based on domain decomposition or the multigrid method. We measure the parallel performances of FaCSI on a benchmark cylindrical geometry and on a problem of physiological interest, namely the blood flow through a patient-specific femoropopliteal bypass. We analyze the dependence of the number of linear solver iterations on the cores count (scalability of the preconditioner) and on the mesh size (optimality). (C) 2016 Elsevier Inc. All rights reserved.

[1]  Jonathan J. Hu,et al.  ML 5.0 Smoothed Aggregation Users's Guide , 2006 .

[2]  W. Wall,et al.  Fixed-point fluid–structure interaction solvers with dynamic relaxation , 2008 .

[3]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[4]  C. Vuik,et al.  Preconditioners for the Steady Incompressible Navier-Stokes Problem , 2008 .

[5]  Patrick Amestoy,et al.  Hybrid scheduling for the parallel solution of linear systems , 2006, Parallel Comput..

[6]  Fabio Nobile,et al.  Added-mass effect in the design of partitioned algorithms for fluid-structure problems , 2005 .

[7]  Yuri Bazilevs Computational Fluid — Structure Interaction with Applications , 2014 .

[8]  P. Tallec,et al.  Fluid structure interaction with large structural displacements , 2001 .

[9]  Tayfun E. Tezduyar,et al.  Solution techniques for the fully discretized equations in computation of fluid–structure interactions with the space–time formulations , 2006 .

[10]  Xiao-Chuan Cai,et al.  A fully implicit domain decomposition based ALE framework for three-dimensional fluid-structure interaction with application in blood flow computation , 2014, J. Comput. Phys..

[11]  Wolfgang A. Wall,et al.  Coupling strategies for biomedical fluid–structure interaction problems , 2010 .

[12]  Luca Dedè,et al.  Semi-implicit BDF time discretization of the Navier–Stokes equations with VMS-LES modeling in a High Performance Computing framework , 2015 .

[13]  Miguel Angel Fernández,et al.  A Newton method using exact jacobians for solving fluid-structure coupling , 2005 .

[14]  Fabio Nobile,et al.  Robin-Robin preconditioned Krylov methods for fluid-structure interaction problems , 2009 .

[15]  John N. Shadid,et al.  A taxonomy and comparison of parallel block multi-level preconditioners for the incompressible Navier-Stokes equations , 2008, J. Comput. Phys..

[16]  C. Peskin The immersed boundary method , 2002, Acta Numerica.

[17]  A. Quarteroni,et al.  Fluid―structure interaction simulation of aortic blood flow , 2011 .

[18]  T. Hughes,et al.  Isogeometric fluid-structure interaction: theory, algorithms, and computations , 2008 .

[19]  C. Vuik,et al.  SIMPLE‐type preconditioners for the Oseen problem , 2009 .

[20]  Fabio Nobile,et al.  Inexact accurate partitioned algorithms for fluid-structure interaction problems with finite elasticity in haemodynamics , 2014, J. Comput. Phys..

[21]  George Karypis,et al.  Parmetis parallel graph partitioning and sparse matrix ordering library , 1997 .

[22]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[23]  Paolo Crosetto,et al.  Quality open source mesh generation for cardiovascular flow simulations , 2012 .

[24]  Matthias Mayr,et al.  A Temporal Consistent Monolithic Approach to Fluid-Structure Interaction Enabling Single Field Predictors , 2015, SIAM J. Sci. Comput..

[25]  Gianluca Iaccarino,et al.  IMMERSED BOUNDARY METHODS , 2005 .

[26]  G. Cottet,et al.  EULERIAN FORMULATION AND LEVEL SET MODELS FOR INCOMPRESSIBLE FLUID-STRUCTURE INTERACTION , 2008 .

[27]  Yuri Bazilevs,et al.  Computational Fluid-Structure Interaction: Methods and Applications , 2013 .

[28]  Fabio Nobile,et al.  Numerical approximation of fluid-structure interaction problems with application to haemodynamics , 2001 .

[29]  Michael Pernice,et al.  A Multigrid-Preconditioned Newton-Krylov Method for the Incompressible Navier-Stokes Equations , 2001, SIAM J. Sci. Comput..

[30]  Paolo Crosetto,et al.  Fluid-Structure Interaction Problems in Hemodynamics , 2011 .

[31]  J. Boyle,et al.  Solvers for large-displacement fluid–structure interaction problems: segregated versus monolithic approaches , 2008 .

[32]  Hermann G. Matthies,et al.  Algorithms for strong coupling procedures , 2006 .

[33]  Sivasankaran Rajamanickam,et al.  Amesos2 and Belos: Direct and iterative solvers for large sparse linear systems , 2012, Sci. Program..

[34]  Barry Smith,et al.  Domain Decomposition Methods for Partial Differential Equations , 1997 .

[35]  John N. Shadid,et al.  Block Preconditioners Based on Approximate Commutators , 2005, SIAM J. Sci. Comput..

[36]  Jean-Frédéric Gerbeau,et al.  A Quasi-Newton Algorithm Based on a Reduced Model for Fluid-Structure Interaction Problems in Blood Flows , 2003 .

[37]  D. Spalding,et al.  A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows , 1972 .

[38]  Andrea Toselli,et al.  Domain decomposition methods : algorithms and theory , 2005 .

[39]  Gwenol Grandperrin Parallel Preconditioners for Navier-Stokes Equations and Fluid-Structure Interaction Problems , 2013 .

[40]  Fabio Nobile,et al.  Fluid-structure partitioned procedures based on Robin transmission conditions , 2008, J. Comput. Phys..

[41]  K. Bathe,et al.  Performance of a new partitioned procedure versus a monolithic procedure in fluid-structure interaction , 2009 .

[42]  Alfio Quarteroni,et al.  A Comparison of Preconditioners for the Steklov–Poincaré Formulation of the Fluid-Structure Coupling in Hemodynamics , 2015 .

[43]  Annalisa Quaini,et al.  Splitting Methods Based on Algebraic Factorization for Fluid-Structure Interaction , 2008, SIAM J. Sci. Comput..

[44]  Wing Kam Liu,et al.  The immersed/fictitious element method for fluid–structure interaction: Volumetric consistency, compressibility and thin members , 2008 .

[45]  Tamara G. Kolda,et al.  An overview of the Trilinos project , 2005, TOMS.

[46]  Annalisa Quaini,et al.  Modular vs. non-modular preconditioners for fluid-structure systems with large added-mass effect , 2008 .

[47]  W. Wall,et al.  Truly monolithic algebraic multigrid for fluid–structure interaction , 2011 .

[48]  M. Heil An efficient solver for the fully-coupled solution of large-displacement fluid-structure interaction problems , 2004 .

[49]  Alfio Quarteroni,et al.  Parallel Preconditioners for the unsteady Navier-Stokes Equations and applications to Hemodynamics Simulations , 2014 .

[50]  D. Perić,et al.  A Fully Implicit Computational Strategy for Strongly Coupled Fluid–Solid Interaction , 2007 .

[51]  A. Quarteroni,et al.  Fluid–structure algorithms based on Steklov–Poincaré operators , 2006 .

[52]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[53]  Paolo Crosetto,et al.  Parallel Algorithms for Fluid-Structure Interaction Problems in Haemodynamics , 2011, SIAM J. Sci. Comput..

[54]  Patrick Amestoy,et al.  A Fully Asynchronous Multifrontal Solver Using Distributed Dynamic Scheduling , 2001, SIAM J. Matrix Anal. Appl..

[55]  Xiao-Chuan Cai,et al.  Scalable parallel methods for monolithic coupling in fluid-structure interaction with application to blood flow modeling , 2010, J. Comput. Phys..

[56]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .