Effect of stress and temperature on the micromechanics of creep in highly irradiated bone and dentin.

[1]  Fang Yuan,et al.  Evolution of Phase Strains During Tensile Loading of Bovine Cortical Bone , 2013 .

[2]  D. Dunand,et al.  Effect of X-ray irradiation on the elastic strain evolution in the mineral phase of bovine bone under creep and load-free conditions. , 2013, Acta biomaterialia.

[3]  D. Dunand,et al.  Effect of high-energy X-ray doses on bone elastic properties and residual strains. , 2011, Journal of the mechanical behavior of biomedical materials.

[4]  D. Dunand,et al.  Effect of freeze -thaw cycles on load transfer between the biomineral and collagen phases in bovine dentin , 2011 .

[5]  D. Dunand,et al.  Creep Mechanisms in Bone and Dentin Via High-Energy X-ray Diffraction , 2011 .

[6]  R. Akhtar,et al.  Lattice strains and load partitioning in bovine trabecular bone. , 2011, Acta biomaterialia.

[7]  S. Stock,et al.  High energy X-ray scattering quantification of in situ-loading-related strain gradients spanning the dentinoenamel junction (DEJ) in bovine tooth specimens. , 2010, Journal of biomechanics.

[8]  S. Stock,et al.  Synchrotron X-ray diffraction study of load partitioning during elastic deformation of bovine dentin. , 2010, Acta biomaterialia.

[9]  Katherine T. Faber,et al.  Load partitioning in honeycomb-like silicon carbide aluminum alloy composites , 2009 .

[10]  Siddhartha Roy,et al.  In situ Study of Internal Load Transfer in a Novel Metal/Ceramic Composite Exhibiting Lamellar Microstructure Using Energy Dispersive Synchrotron X‐ray Diffraction , 2009 .

[11]  M. L. Young,et al.  Load partitioning in Al2O3-Al composites with three-dimensional periodic architecture , 2009 .

[12]  R. Akhtar,et al.  Elastic strains in antler trabecular bone determined by synchrotron X-ray diffraction. , 2008, Acta biomaterialia.

[13]  M A Meyers,et al.  Structure and mechanical properties of selected biological materials. , 2008, Journal of the mechanical behavior of biomedical materials.

[14]  D. Reid,et al.  The Organic−Mineral Interface in Teeth Is Like That in Bone and Dominated by Polysaccharides: Universal Mediators of Normal Calcium Phosphate Biomineralization in Vertebrates? , 2008 .

[15]  Elliot P. Douglas,et al.  Bone structure and formation: A new perspective , 2007 .

[16]  Michael V Swain,et al.  Influence of environment on the mechanical behaviour of mature human enamel. , 2007, Biomaterials.

[17]  S. Maltsev,et al.  The Organic−Mineral Interface in Bone Is Predominantly Polysaccharide , 2007 .

[18]  Markus J. Buehler,et al.  Molecular nanomechanics of nascent bone: fibrillar toughening by mineralization , 2007 .

[19]  David C. Dunand,et al.  Load partitioning during compressive loading of a Mg/MgB2 composite , 2007 .

[20]  Mark R. Daymond,et al.  Load partitioning between ferrite and cementite during elasto-plastic deformation of an ultrahigh-carbon steel , 2007 .

[21]  S. Stock,et al.  Micromechanical response of mineral and collagen phases in bone. , 2007, Journal of structural biology.

[22]  Wolfgang Wagermaier,et al.  Cooperative deformation of mineral and collagen in bone at the nanoscale , 2006, Proceedings of the National Academy of Sciences.

[23]  Himadri S. Gupta,et al.  Fibrillar level fracture in bone beyond the yield point , 2006 .

[24]  M. Horton,et al.  Atomic force microscopy of collagen structure in bone and dentine revealed by osteoclastic resorption. , 2005, Ultramicroscopy.

[25]  S. Stock,et al.  Internal strains and stresses measured in cortical bone via high-energy X-ray diffraction. , 2005, Journal of structural biology.

[26]  Himadri S. Gupta,et al.  Nanoscale deformation mechanisms in bone. , 2005, Nano letters.

[27]  Jacqueline A. Cutroni,et al.  Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture , 2005, Nature materials.

[28]  R. Aspden,et al.  Thermal stability and structure of cancellous bone mineral from the femoral head of patients with osteoarthritis or osteoporosis , 2005, Annals of the rheumatic diseases.

[29]  A. Blume,et al.  The Influence of X-ray Radiation on the Mineral/Organic Matrix Interaction of Bone Tissue: An FT-IR Microscopic Investigation , 2005, The International journal of artificial organs.

[30]  L. Geng,et al.  Experimental and numerical studies of the effect of whisker misalignment on the hot compressive deformation behavior of the metal matrix composites , 2004 .

[31]  X Edward Guo,et al.  The dependence of transversely isotropic elasticity of human femoral cortical bone on porosity. , 2004, Journal of biomechanics.

[32]  G W Marshall,et al.  Resonant ultrasound spectroscopy measurements of the elastic constants of human dentin. , 2004, Journal of biomechanics.

[33]  A. Gómez-Cortés,et al.  Thermal analysis study of human bone , 2003 .

[34]  R O Ritchie,et al.  Crack blunting, crack bridging and resistance-curve fracture mechanics in dentin: effect of hydration. , 2003, Biomaterials.

[35]  R. Ritchie,et al.  Mechanistic fracture criteria for the failure of human cortical bone , 2003, Nature materials.

[36]  Bill Kahler,et al.  Fracture-toughening mechanisms responsible for differences in work to fracture of hydrated and dehydrated dentine. , 2003, Journal of biomechanics.

[37]  J. Palamara,et al.  Time-dependent properties of human root dentin. , 2002, Dental materials : official publication of the Academy of Dental Materials.

[38]  P. Withers,et al.  A neutron diffraction study of creep and damage occurrence in an A359/SiC composite , 2002 .

[39]  J. Currey Biomaterials: Sacrificial bonds heal bone , 2001, Nature.

[40]  P. Withers,et al.  An investigation of the isothermal creep response of Al-based composites by neutron diffraction , 2000 .

[41]  K. Bridwell,et al.  Surgical treatment of idiopathic adolescent scoliosis. , 1999, Spine.

[42]  David B. Burr,et al.  Skeletal Tissue Mechanics , 1998, Springer New York.

[43]  Steve Weiner,et al.  THE MATERIAL BONE: Structure-Mechanical Function Relations , 1998 .

[44]  P. Antich,et al.  Bone Elasticity and Ultrasound Velocity Are Affected by Subtle Changes in the Organic Matrix , 1998, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[45]  N. Sasaki,et al.  Elongation mechanism of collagen fibrils and force-strain relations of tendon at each level of structural hierarchy. , 1996, Journal of biomechanics.

[46]  D B Burr,et al.  In vivo measurement of human tibial strains during vigorous activity. , 1996, Bone.

[47]  T. Santner,et al.  The effect of temperature, stress and microstructure on the creep of compact bovine bone. , 1993, Journal of biomechanics.

[48]  Mhj Koch,et al.  Quantitative analysis of the molecular sliding mechanisms in native tendon collagen — time-resolved dynamic studies using synchrotron radiation , 1987 .

[49]  D. Watts,et al.  Fracture Toughness of Human Dentin , 1986, Journal of dental research.

[50]  M. Koch,et al.  Stress-induced molecular rearrangement in tendon collagen. , 1985, Journal of molecular biology.

[51]  S. Rasmussen,et al.  Fracture Properties of Human Enamel and Dentin in an Aqueous Environment , 1984, Journal of dental research.

[52]  R. A. Hocevar Understanding, planning, and managing tooth movement: orthodontic force system theory. , 1981, American journal of orthodontics.

[53]  A. Heuer,et al.  Fracture Properties of Human Enamel and Dentin , 1976, Journal of dental research.

[54]  D A Parry,et al.  Analysis of the primary structure of collagen for the origins of molecular packing. , 1973, Journal of molecular biology.

[55]  E. Bonfils-Roberts The rib spreader: a chapter in the history of thoracic surgery. , 1972, Chest.

[56]  J. Katz,et al.  Elastic properties of bovine dentine and enamel. , 1970, Archives of oral biology.

[57]  F. A. Peyton,et al.  Elastic and Mechanical Properties of Human Dentin , 1958, Journal of dental research.

[58]  D B MAHLER,et al.  Physical Properties of Dentin , 1952, Journal of dental research.

[59]  A. Götte,et al.  Metall , 1897 .

[60]  D. Dunand,et al.  Variability in the elastic properties of bovine dentin at multiple length scales. , 2012, Journal of the mechanical behavior of biomedical materials.

[61]  L. Brinson,et al.  Evolution of load transfer between hydroxyapatite and collagen during creep deformation of bone. , 2012, Acta biomaterialia.

[62]  Junting Liu,et al.  Compressive behavior of Csf/AZ91D composites by liquid–solid extrusion directly following vacuum infiltration technique , 2012 .

[63]  Carl Eklund,et al.  National Institute for Standards and Technology , 2009, Encyclopedia of Biometrics.

[64]  A A Friesem,et al.  Anisotropic Poisson's ratio and compression modulus of cortical bone determined by speckle interferometry. , 2007, Journal of biomechanics.

[65]  J. J. Mecholsky,et al.  Effect of temperature on the fracture toughness of compact bone. , 2007, Journal of biomechanics.

[66]  Paul Roschger,et al.  From brittle to ductile fracture of bone , 2006, Nature materials.

[67]  D. Dunand,et al.  Tertiary compression creep of long-fiber composites: A model for fiber kinking and buckling , 2001 .

[68]  Y. Yeni,et al.  Influence of bone composition and apparent density on fracture toughness of the human femur and tibia. , 1998, Bone.

[69]  W. Walsh,et al.  Compressive properties of cortical bone: mineral-organic interfacial bonding. , 1994, Biomaterials.

[70]  A. Burstein,et al.  The elastic and ultimate properties of compact bone tissue. , 1975, Journal of biomechanics.