DOUBLE TIDAL DISRUPTIONS IN GALACTIC NUCLEI

A star on a nearly radial trajectory approaching a massive black hole (MBH) gets tidally disrupted if it comes sufficiently close to the MBH. Here we explore what happens to binary stars whose centers of mass approach the MBH on nearly radial orbits. The interaction with the MBH often leads to both stars being disrupted in sequence. We argue that such events could produce light curves that are substantially different from those of the single disruptions, with possible features such as two local maxima. Tidal forces from the MBH can also lead the binary components to collide; these merger products can form highly magnetized stars, whose subsequent tidal disruption may enable prompt jet formation.

[1]  Hanno Rein,et al.  ias15: a fast, adaptive, high-order integrator for gravitational dynamics, accurate to machine precision over a billion orbits , 2014, 1409.4779.

[2]  J. Guillochon,et al.  ERRATUM: “HYDRODYNAMICAL SIMULATIONS TO DETERMINE THE FEEDING RATE OF BLACK HOLES BY THE TIDAL DISRUPTION OF STARS: THE IMPORTANCE OF THE IMPACT PARAMETER AND STELLAR STRUCTURE” (2013, ApJ, 767, 25) , 2014 .

[3]  J. Prieto,et al.  ASASSN-14ae: a tidal disruption event at 200 Mpc , 2014, 1405.1417.

[4]  Adam A. Miller,et al.  A CONTINUUM OF H- TO He-RICH TIDAL DISRUPTION CANDIDATES WITH A PREFERENCE FOR E+A GALAXIES , 2014, 1405.1415.

[5]  C. Tout,et al.  The Most Magnetic Stars , 2013, 1310.2696.

[6]  Columbia,et al.  Swift J1644+57 gone MAD: the case for dynamically-important magnetic flux threading the black hole in a jetted tidal disruption event , 2013, 1301.1982.

[7]  S. Gezari,et al.  THE ULTRAVIOLET-BRIGHT, SLOWLY DECLINING TRANSIENT PS1-11af AS A PARTIAL TIDAL DISRUPTION EVENT , 2013, 1309.3009.

[8]  C. Matzner,et al.  EVOLUTION OF ACCRETION DISKS IN TIDAL DISRUPTION EVENTS , 2013, 1305.5570.

[9]  O. H. Ramírez-Agudelo,et al.  The VLT-FLAMES Tarantula Survey IV: Candidates for isolated high-mass star formation in 30 Doradus , 2012, 1204.3628.

[10]  Enrico Ramirez-Ruiz,et al.  HYDRODYNAMICAL SIMULATIONS TO DETERMINE THE FEEDING RATE OF BLACK HOLES BY THE TIDAL DISRUPTION OF STARS: THE IMPORTANCE OF THE IMPACT PARAMETER AND STELLAR STRUCTURE , 2012, 1206.2350.

[11]  C. Evans,et al.  Binary Interaction Dominates the Evolution of Massive Stars , 2012, Science.

[12]  J. Guillochon,et al.  THE TIDAL DISRUPTION OF GIANT STARS AND THEIR CONTRIBUTION TO THE FLARING SUPERMASSIVE BLACK HOLE POPULATION , 2012, 1206.2922.

[13]  T. Grav,et al.  An ultraviolet–optical flare from the tidal disruption of a helium-rich stellar core , 2012, Nature.

[14]  E. Rossi,et al.  HYPER VELOCITY STARS AND THE RESTRICTED PARABOLIC 3-BODY PROBLEM , 2012 .

[15]  H. Rein,et al.  REBOUND: An open-source multi-purpose N-body code for collisional dynamics , 2011, 1110.4876.

[16]  P. Giommi,et al.  Relativistic jet activity from the tidal disruption of a star by a massive black hole , 2011, Nature.

[17]  Ryan Chornock,et al.  Birth of a relativistic outflow in the unusual γ-ray transient Swift J164449.3+573451 , 2011, Nature.

[18]  E. O. Ofek,et al.  An Extremely Luminous Panchromatic Outburst from the Nucleus of a Distant Galaxy , 2011, Science.

[19]  Nathaniel R. Butler,et al.  A Possible Relativistic Jetted Outburst from a Massive Black Hole Fed by a Tidally Disrupted Star , 2011, Science.

[20]  Brian D. Metzger,et al.  Radio transients from stellar tidal disruption by massive black holes , 2011, 1102.1429.

[21]  Andrew J. Drake,et al.  OPTICAL DISCOVERY OF PROBABLE STELLAR TIDAL DISRUPTION FLARES , 2010, 1009.1627.

[22]  D. Merritt,et al.  TIDAL BREAKUP OF BINARY STARS AT THE GALACTIC CENTER. II. HYDRODYNAMIC SIMULATIONS , 2010, 1008.5369.

[23]  E. Rossi,et al.  HYPERVELOCITY STARS AND THE RESTRICTED PARABOLIC THREE-BODY PROBLEM , 2009, 0911.1136.

[24]  J. Faber,et al.  TIDAL BREAKUP OF BINARY STARS AT THE GALACTIC CENTER AND ITS CONSEQUENCES , 2009, 0909.1959.

[25]  T. Paumard,et al.  AN EXTREMELY TOP-HEAVY INITIAL MASS FUNCTION IN THE GALACTIC CENTER STELLAR DISKS , 2009, 0908.2177.

[26]  C. Hopman,et al.  BINARY DYNAMICS NEAR A MASSIVE BLACK HOLE , 2009, 0906.0374.

[27]  E. Quataert,et al.  Optical Flares from the Tidal Disruption of Stars by Massive Black Holes , 2009, Proceedings of the International Astronomical Union.

[28]  S. Gezari,et al.  LUMINOUS THERMAL FLARES FROM QUIESCENT SUPERMASSIVE BLACK HOLES , 2009, 0904.1596.

[29]  University of Cambridge,et al.  Stellar disruption by a supermassive black hole: is the light curve really proportional to t -5/3 ? , 2008, 0810.1288.

[30]  T. Alexander,et al.  Massive Perturber-driven Interactions between Stars and a Massive Black Hole , 2006, astro-ph/0606443.

[31]  A. Loeb,et al.  Hypervelocity collisions of binary stars at the Galactic Centre , 2006, astro-ph/0609440.

[32]  G. Hasinger,et al.  A Huge Drop in the X-Ray Luminosity of the Nonactive Galaxy RX J1242.6–1119A, and the First Postflare Spectrum: Testing the Tidal Disruption Scenario , 2004, astro-ph/0402468.

[33]  P. Kroupa On the variation of the initial mass function , 2000, astro-ph/0009005.

[34]  S. Tremaine,et al.  Rates of tidal disruption of stars by massive central black holes , 1999, astro-ph/9902032.

[35]  S. Tremaine,et al.  Resonant relaxation in stellar systems , 1996, astro-ph/9603018.

[36]  Achim Weiss,et al.  Stellar Structure and Evolution , 1990 .

[37]  Martin J. Rees,et al.  Tidal disruption of stars by black holes of 106–108 solar masses in nearby galaxies , 1988, Nature.

[38]  J. Hills,et al.  Hyper-velocity and tidal stars from binaries disrupted by a massive Galactic black hole , 1988, Nature.

[39]  R. Kulsrud,et al.  Stellar distribution around a black hole: Numerical integration of the Fokker-Planck equation , 1978 .

[40]  S. Shapiro,et al.  The distribution and consumption rate of stars around a massive, collapsed object , 1977 .

[41]  J. Hills Possible power source of Seyfert galaxies and QSOs , 1975, Nature.

[42]  Stuart L. Shapiro,et al.  Random Gravitational Encounters and the Evolution of Spherical Systems. III. Halo , 1971 .