Transient spatiotopic integration across saccadic eye movements mediates visual stability.

Eye movements pose major problems to the visual system, because each new saccade changes the mapping of external objects on the retina. It is known that stimuli briefly presented around the time of saccades are systematically mislocalized, whereas continuously visible objects are perceived as spatially stable even when they undergo large transsaccadic displacements. In this study we investigated the relationship between these two phenomena and measured how human subjects perceive the position of pairs of bars briefly displayed around the time of large horizontal saccades. We show that they interact strongly, with the perisaccadic bar being drawn toward the other, dramatically altering the pattern of perisaccadic mislocalization. The interaction field extends over a wide range (200 ms and 20°) and is oriented along the retinotopic trajectory of the saccade-induced motion, suggesting a mechanism that integrates pre- and postsaccadic stimuli at different retinal locations but similar external positions. We show how transient changes in spatial integration mechanisms, which are consistent with the present psychophysical results and with the properties of "remapping cells" reported in the literature, can create transient craniotopy by merging the distinct retinal images of the pre- and postsaccadic fixations to signal a single stable object.

[1]  C. Sherrington OBSERVATIONS ON THE SENSUAL RÔLE OF THE PROPRIOCEPTIVE NERVE-SUPPLY OF THE EXTRINSIC OCULAR MUSCLES , 1918 .

[2]  R. Sperry Neural basis of the spontaneous optokinetic response produced by visual inversion. , 1950, Journal of comparative and physiological psychology.

[3]  L. Matin,et al.  Visual Perception of Direction for Stimuli Flashed During Voluntary Saccadic Eye Movements , 1965, Science.

[4]  N. Bischof,et al.  Untersuchungen und Überlegungen zur Richtungswahrnehmung bei willkürlichen sakkadischen Augenbewegungen , 1968 .

[5]  Bruce Bridgeman,et al.  Failure to detect displacement of the visual world during saccadic eye movements , 1975, Vision Research.

[6]  F. C. Volkmann Human visual suppression , 1986, Vision Research.

[7]  H. Honda Perceptual localization of visual stimuli flashed during saccades , 1989, Perception & psychophysics.

[8]  J R Duhamel,et al.  The updating of the representation of visual space in parietal cortex by intended eye movements. , 1992, Science.

[9]  D. E. Irwin,et al.  A localist evaluation solution for visual stability across saccades , 1994, Behavioral and Brain Sciences.

[10]  D. Burr,et al.  Selective suppression of the magnocellular visual pathway during saccadic eye movements , 1994, Nature.

[11]  J. Schlag,et al.  Illusory localization of stimuli flashed in the dark before saccades , 1995, Vision Research.

[12]  B. Bridgeman,et al.  Postsaccadic target blanking prevents saccadic suppression of image displacement , 1996, Vision Research.

[13]  David C. Burr,et al.  Compression of visual space before saccades , 1997, Nature.

[14]  M. Concetta Morrone,et al.  Apparent Position of Visual Targets during Real and Simulated Saccadic Eye Movements , 1997, The Journal of Neuroscience.

[15]  B. Bridgeman,et al.  Immediate post-saccadic information mediates space constancy , 1998, Vision Research.

[16]  Bart Krekelberg,et al.  Postsaccadic visual references generate presaccadic compression of space , 2000, Nature.

[17]  Hiroyuki Sogo,et al.  Perception of relation of stimuli locations successively flashed before saccade , 2001, Vision Research.

[18]  Heiner Deubel,et al.  Transsaccadic memory of position and form. , 2002, Progress in brain research.

[19]  Kae Nakamura,et al.  Updating of the visual representation in monkey striate and extrastriate cortex during saccades , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[20]  N. Osaka,et al.  Effects of inter-stimulus interval on perceived locations of successively flashed perisaccadic stimuli , 2002, Vision Research.

[21]  Madeleine Schlag-Rey,et al.  Spatial localization precedes temporal determination in visual perception , 2003, Vision Research.

[22]  C. Genovese,et al.  Spatial Updating in Human Parietal Cortex , 2003, Neuron.

[23]  T. Vilis,et al.  Gaze-Centered Updating of Visual Space in Human Parietal Cortex , 2003, The Journal of Neuroscience.

[24]  Marcus Kaiser,et al.  Perisaccadic Mislocalization Orthogonal to Saccade Direction , 2004, Neuron.

[25]  E. Holst,et al.  Das Reafferenzprinzip , 2004, Naturwissenschaften.

[26]  H. Deubel Localization of targets across saccades: Role of landmark objects , 2004 .

[27]  E. Brenner,et al.  Judging relative positions across saccades , 2005, Vision Research.

[28]  Susumu Tachi,et al.  Perisaccadic perception of continuous flickers , 2005, Vision Research.

[29]  M Concetta Morrone,et al.  Saccadic eye movements cause compression of time as well as space , 2005, Nature Neuroscience.

[30]  D. Melcher Predictive remapping of visual features precedes saccadic eye movements , 2007, Nature Neuroscience.

[31]  M. Kenward,et al.  An Introduction to the Bootstrap , 2007 .

[32]  David C Burr,et al.  Fusion of Visual and Auditory Stimuli during Saccades: A Bayesian Explanation for Perisaccadic Distortions , 2007, The Journal of Neuroscience.

[33]  C. Genovese,et al.  Remapping in human visual cortex. , 2007, Journal of neurophysiology.

[34]  C. Koch,et al.  How postsaccadic visual structure affects the detection of intrasaccadic target displacements , 2007 .

[35]  C. Schor,et al.  Effects of luminance and saccadic suppression on perisaccadic spatial distortions. , 2008, Journal of vision.

[36]  F. Hamker,et al.  About the influence of post-saccadic mechanisms for visual stability on peri-saccadic compression of object location. , 2008, Journal of vision.

[37]  R. Wurtz Neuronal mechanisms of visual stability , 2008, Vision Research.

[38]  C. Colby,et al.  Trans-saccadic perception , 2008, Trends in Cognitive Sciences.

[39]  Eli Brenner,et al.  Temporal information can influence spatial localization. , 2009, Journal of neurophysiology.

[40]  Guido Marco Cicchini,et al.  Spatiotemporal Distortions of Visual Perception at the Time of Saccades , 2009, The Journal of Neuroscience.

[41]  B. Bridgeman,et al.  Landmarks facilitate visual space constancy across saccades and during fixation , 2010, Vision Research.

[42]  D. Burr,et al.  Vision: Keeping the World Still When the Eyes Move , 2010, Current Biology.

[43]  James Elliott,et al.  Rapid reconfiguration reduces the attentional blink , 2010 .

[44]  P. Cavanagh,et al.  Visual stability based on remapping of attention pointers , 2010, Trends in Cognitive Sciences.

[45]  Maria Concetta Morrone,et al.  Spatiotopic coding and remapping in humans , 2011, Philosophical Transactions of the Royal Society B: Biological Sciences.

[46]  M. Morrone,et al.  Perisaccadic broadening of receptive fields predicts compression of space and time , 2012 .

[47]  H. Helmholtz Handbuch der physiologischen Optik , 2015 .