Compressed sensing quantum process tomography for superconducting quantum gates

© 2014 American Physical Society. We apply the method of compressed sensing (CS) quantum process tomography (QPT) to characterize quantum gates based on superconducting Xmon and phase qubits. Using experimental data for a two-qubit controlled-Z gate, we obtain an estimate for the process matrix χ with reasonably high fidelity compared to full QPT, but using a significantly reduced set of initial states and measurement configurations. We show that the CS method still works when the amount of used data is so small that the standard QPT would have an underdetermined system of equations. We also apply the CS method to the analysis of the three-qubit Toffoli gate with numerically added noise, and similarly show that the method works well for a substantially reduced set of data. For the CS calculations, we use two different bases in which the process matrix χ is approximately sparse, and show that the resulting estimates of the process matrices match each other with reasonably high fidelity. For both two-qubit and three-qubit gates, we characterize the quantum process by not only its process matrix and fidelity, but also by the corresponding standard deviation, defined via variation of the state fidelity for different initial states.

[1]  N. Gershenfeld,et al.  Bulk Spin-Resonance Quantum Computation , 1997, Science.

[2]  Z. Hradil Quantum-state estimation , 1996, quant-ph/9609012.

[3]  L Frunzio,et al.  Approaching unit visibility for control of a superconducting qubit with dispersive readout. , 2005, Physical review letters.

[4]  B. Josephson Possible new effects in superconductive tunnelling , 1962 .

[5]  E.J. Candes,et al.  An Introduction To Compressive Sampling , 2008, IEEE Signal Processing Magazine.

[6]  Jaroslaw Adam Miszczak,et al.  Sub- and super-fidelity as bounds for quantum fidelity , 2008, Quantum Inf. Comput..

[7]  Giacomo Mauro D'Ariano,et al.  Imprinting complete information about a quantum channel on its output state. , 2003, Physical review letters.

[8]  A. N. Korotkov,et al.  Two-qubit decoherence mechanisms revealed via quantum process tomography , 2009, 0903.0671.

[9]  John M. Martinis,et al.  Superconducting phase qubits , 2009, Quantum Inf. Process..

[10]  John M Martinis,et al.  Decoherence in josephson phase qubits from junction resonators. , 2004, Physical review letters.

[11]  Robin Blume-Kohout,et al.  Gate fidelity fluctuations and quantum process invariants , 2009, 0910.1315.

[12]  M. Sedlak,et al.  Process-fidelity estimation of a linear optical quantum-controlled-Z gate: A comparative study , 2014 .

[13]  A. Rajagopal,et al.  Kraus representation of quantum evolution and fidelity as manifestations of Markovian and non-Markovian forms , 2010, 1007.4498.

[14]  P. M. Echternach,et al.  Free evolution of superposition states in a single Cooper pair box , 2004 .

[15]  J. Gambetta,et al.  Two-qubit state tomography using a joint dispersive readout. , 2008, Physical review letters.

[16]  Jay M. Gambetta,et al.  Process verification of two-qubit quantum gates by randomized benchmarking , 2012, 1210.7011.

[17]  D. Deutsch Quantum computational networks , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[18]  Steven T. Flammia,et al.  Quantum tomography via compressed sensing: error bounds, sample complexity and efficient estimators , 2012, 1205.2300.

[19]  R. J. Schoelkopf,et al.  Quantum Back-Action of an Individual Variable-Strength Measurement , 2013, Science.

[20]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[21]  Jens Koch,et al.  Suppressing Charge Noise Decoherence in Superconducting Charge Qubits , 2007, 0712.3581.

[22]  Sergei P. Kulik,et al.  Bell-state preparation using pulsed nondegenerate two-photon entanglement , 2001 .

[23]  A. Uhlmann The "transition probability" in the state space of a ∗-algebra , 1976 .

[24]  A. T. Rezakhani,et al.  Equation of motion for the process matrix: Hamiltonian identification and dynamical control of open , 2008, 0805.3188.

[25]  Timothy F. Havel,et al.  EXPERIMENTAL QUANTUM ERROR CORRECTION , 1998, quant-ph/9802018.

[26]  King,et al.  Experimental Determination of the Motional Quantum State of a Trapped Atom. , 1996, Physical review letters.

[27]  H. Sosa-Martinez,et al.  Quantum state tomography by continuous measurement and compressed sensing , 2012, 1208.5015.

[28]  Felix J. Herrmann,et al.  Non-parametric seismic data recovery with curvelet frames , 2008 .

[29]  R. Kosut,et al.  Efficient measurement of quantum dynamics via compressive sensing. , 2009, Physical review letters.

[30]  F. Pastawski,et al.  Selective and efficient estimation of parameters for quantum process tomography. , 2008, Physical review letters.

[31]  Stephen Becker,et al.  Quantum state tomography via compressed sensing. , 2009, Physical review letters.

[32]  L Frunzio,et al.  ac Stark shift and dephasing of a superconducting qubit strongly coupled to a cavity field. , 2005, Physical review letters.

[33]  T. Monz,et al.  Process tomography of ion trap quantum gates. , 2006, Physical review letters.

[34]  F. Jelezko,et al.  Observation of coherent oscillations in a single electron spin. , 2004, Physical review letters.

[35]  Adam Gali,et al.  Theory of the neutral nitrogen-vacancy center in diamond and its application to the realization of a qubit , 2009 .

[36]  H. Tolle,et al.  Optimization Methods , 1975 .

[37]  Isaac L. Chuang,et al.  Prescription for experimental determination of the dynamics of a quantum black box , 1997 .

[38]  David Poulin,et al.  Practical characterization of quantum devices without tomography. , 2011, Physical review letters.

[39]  Jens Koch,et al.  Randomized benchmarking and process tomography for gate errors in a solid-state qubit. , 2008, Physical review letters.

[40]  J. Martinis,et al.  Rabi oscillations in a large Josephson-junction qubit. , 2002, Physical review letters.

[41]  P. Zoller,et al.  Complete Characterization of a Quantum Process: The Two-Bit Quantum Gate , 1996, quant-ph/9611013.

[42]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[43]  Timothy F. Havel,et al.  Robust method for estimating the Lindblad operators of a dissipative quantum process from measurements of the density operator at multiple time points , 2003 .

[44]  J. Gambetta,et al.  Universal quantum gate set approaching fault-tolerant thresholds with superconducting qubits. , 2012, Physical review letters.

[45]  Jens Koch,et al.  Fluxonium: Single Cooper-Pair Circuit Free of Charge Offsets , 2009, Science.

[46]  E. Candès The restricted isometry property and its implications for compressed sensing , 2008 .

[47]  D. Donoho,et al.  Sparse MRI: The application of compressed sensing for rapid MR imaging , 2007, Magnetic resonance in medicine.

[48]  Yi-Kai Liu,et al.  Direct fidelity estimation from few Pauli measurements. , 2011, Physical review letters.

[49]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[50]  R. Jozsa Fidelity for Mixed Quantum States , 1994 .

[51]  R. D. Wolf Quantum Computation and Shor's Factoring Algorithm , 1999 .

[52]  P Bertet,et al.  Characterization of a two-transmon processor with individual single-shot qubit readout. , 2012, Physical review letters.

[53]  Seth Lloyd,et al.  Quantum process tomography of the quantum Fourier transform. , 2004, The Journal of chemical physics.

[54]  Eric Charron,et al.  Optimizing a phase gate using quantum interference. , 2002, Physical review letters.

[55]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[56]  M. Oberthaler,et al.  Dynamics of Bose-Einstein condensates in optical lattices , 2006 .

[57]  N. Langford,et al.  Distance measures to compare real and ideal quantum processes (14 pages) , 2004, quant-ph/0408063.

[58]  R. J. Schoelkopf,et al.  Resolving photon number states in a superconducting circuit , 2007, Nature.

[59]  S. Frick,et al.  Compressed Sensing , 2014, Computer Vision, A Reference Guide.

[60]  A. Jamiołkowski Linear transformations which preserve trace and positive semidefiniteness of operators , 1972 .

[61]  Measuring the quantum state of a large angular momentum. , 2001, Physical review letters.

[62]  M. Steffen,et al.  Measurement of the Entanglement of Two Superconducting Qubits via State Tomography , 2006, Science.

[63]  J. Martinis,et al.  Superconducting Qubits: A Short Review , 2004, cond-mat/0411174.

[64]  J. E. Mooij,et al.  Coherent Quantum Dynamics of a Superconducting Flux Qubit , 2003, Science.

[65]  Yu I Bogdanov,et al.  Statistical estimation of the efficiency of quantum state tomography protocols. , 2010, Physical review letters.

[66]  Philip W. Anderson,et al.  PROBABLE OBSERVATION OF THE JOSEPHSON SUPERCONDUCTING TUNNELING EFFECT , 1963 .

[67]  I. Chuang,et al.  Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonance , 2001, Nature.

[68]  Frederick W Strauch,et al.  Quantum logic gates for coupled superconducting phase qubits. , 2003, Physical review letters.

[69]  John Clarke,et al.  Principles and applications of SQUIDs , 1989, Proc. IEEE.

[70]  E. Knill,et al.  Randomized Benchmarking of Quantum Gates , 2007, 0707.0963.

[71]  Hoon Kim,et al.  Monte Carlo Statistical Methods , 2000, Technometrics.

[72]  P. Joyez,et al.  Manipulating the Quantum State of an Electrical Circuit , 2002, Science.

[73]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[74]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[75]  J. Cirac,et al.  Quantum Computations with Cold Trapped Ions. , 1995, Physical review letters.

[76]  M. Steffen,et al.  State tomography of capacitively shunted phase qubits with high fidelity. , 2006, Physical review letters.

[77]  Andrew W. Cross,et al.  Microwave-activated conditional-phase gate for superconducting qubits , 2013, 1307.2594.

[78]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[79]  J. Emerson,et al.  Scalable noise estimation with random unitary operators , 2005, quant-ph/0503243.

[80]  Adi Shamir,et al.  A method for obtaining digital signatures and public-key cryptosystems , 1978, CACM.

[81]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[82]  Shih,et al.  New type of Einstein-Podolsky-Rosen-Bohm experiment using pairs of light quanta produced by optical parametric down conversion. , 1988, Physical review letters.

[83]  Daniel A. Lidar,et al.  Quantum Process Tomography: Resource Analysis of Different Strategies , 2007, quant-ph/0702131.

[84]  M. Mohseni,et al.  Direct characterization of quantum dynamics. , 2006, Physical review letters.

[85]  Daniel L Marks,et al.  Compressive holography. , 2009, Optics express.

[86]  L. H. Pedersen,et al.  The distribution of quantum fidelities , 2008, 0807.4843.

[87]  J Eisert,et al.  Assessing non-Markovian quantum dynamics. , 2007, Physical review letters.

[88]  Massimiliano F. Sacchi Maximum-likelihood reconstruction of completely positive maps , 2001 .

[89]  S. Girvin,et al.  Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation , 2004, cond-mat/0402216.

[90]  Matthias Steffen,et al.  Observation of quantum oscillations between a Josephson phase qubit and a microscopic resonator using fast readout. , 2004, Physical review letters.

[91]  Vijay Patel,et al.  Quantum superposition of distinct macroscopic states , 2000, Nature.

[92]  Massimo Fornasier,et al.  Compressive Sensing , 2015, Handbook of Mathematical Methods in Imaging.

[93]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[94]  Jens Koch,et al.  Coupling superconducting qubits via a cavity bus , 2007, Nature.

[95]  Debbie W. Leung,et al.  Realization of quantum process tomography in NMR , 2000, quant-ph/0012032.

[96]  T. Monz,et al.  Realization of the quantum Toffoli gate with trapped ions. , 2008, Physical review letters.

[97]  D. Awschalom,et al.  Spin coherence during optical excitation of a single nitrogen-vacancy center in diamond. , 2011, Physical review letters.

[98]  Lov K. Grover Quantum Mechanics Helps in Searching for a Needle in a Haystack , 1997, quant-ph/9706033.

[99]  N. Gershenfeld,et al.  Experimental Implementation of Fast Quantum Searching , 1998 .

[100]  B. Hensen,et al.  High-fidelity projective read-out of a solid-state spin quantum register , 2011, Nature.

[101]  I. Deutsch,et al.  Quantum process tomography of unitary and near-unitary maps , 2014, 1404.2877.

[102]  L. Jiang,et al.  Quantum Register Based on Individual Electronic and Nuclear Spin Qubits in Diamond , 2007, Science.

[103]  Andrew G. White,et al.  Measurement of qubits , 2001, quant-ph/0103121.

[104]  Jeremy L O'Brien,et al.  Measuring two-qubit gates , 2007 .

[105]  Ting Zhang,et al.  Experimental quantum state tomography via compressed sampling. , 2012, Physical review letters.

[106]  John M. Martinis,et al.  Theoretical analysis of measurement crosstalk for coupled Josephson phase qubits , 2007 .

[107]  George Gabriel Stokes,et al.  On the Composition and Resolution of Streams of Polarized Light from different Sources , 2009 .

[108]  C. Monroe,et al.  Experimental Issues in Coherent Quantum-State Manipulation of Trapped Atomic Ions , 1997, Journal of research of the National Institute of Standards and Technology.

[109]  Matthew J. Rosseinsky,et al.  Physical Review B , 2011 .

[110]  K. Życzkowski,et al.  An Introduction to Quantum Entanglement: A Geometric Approach , 2006, quant-ph/0606228.

[111]  Raymond Laflamme,et al.  Symmetrized Characterization of Noisy Quantum Processes , 2007, Science.

[112]  M. Devoret,et al.  Quantum coherence with a single Cooper pair , 1998 .

[113]  R. Laflamme,et al.  Exponential speedup with a single bit of quantum information: measuring the average fidelity decay. , 2003, Physical review letters.

[114]  J. Fiurášek,et al.  Quantum inference of states and processes , 2002, quant-ph/0210146.

[115]  Y. Pashkin,et al.  Coherent control of macroscopic quantum states in a single-Cooper-pair box , 1999, Nature.

[116]  S. Girvin,et al.  Charge-insensitive qubit design derived from the Cooper pair box , 2007, cond-mat/0703002.

[117]  T. Duty,et al.  Coherent dynamics of a Josephson charge qubit , 2003, cond-mat/0305433.

[118]  R. Blatt,et al.  Entangled states of trapped atomic ions , 2008, Nature.

[119]  Luigi Frunzio,et al.  Realization of three-qubit quantum error correction with superconducting circuits , 2011, Nature.

[120]  Ny,et al.  Quantum process tomography of a universal entangling gate implemented with Josephson phase qubits , 2009, 0910.1118.

[121]  Blake R. Johnson,et al.  Simple all-microwave entangling gate for fixed-frequency superconducting qubits. , 2011, Physical review letters.

[122]  J. Mompart,et al.  Quantum computing in optical microtraps based on the motional states of neutral atoms , 2002 .

[123]  Shih,et al.  New high-intensity source of polarization-entangled photon pairs. , 1995, Physical review letters.

[124]  D. Leung,et al.  Experimental realization of a quantum algorithm , 1998, Nature.

[125]  M. Nielsen A simple formula for the average gate fidelity of a quantum dynamical operation [rapid communication] , 2002, quant-ph/0205035.