Diffusion Kernels on Statistical Manifolds
暂无分享,去创建一个
[1] Clarence E. Rose,et al. What is tensor analysis? , 1938, Electrical Engineering.
[2] M. Aizerman,et al. Theoretical Foundations of the Potential Function Method in Pattern Recognition Learning , 1964 .
[3] M. Berger,et al. Le Spectre d'une Variete Riemannienne , 1971 .
[4] A. Dawid. Further Comments on Some Comments on a Paper by Bradley Efron , 1977 .
[5] S. Yau,et al. Estimates of eigenvalues of a compact Riemannian manifold , 1980 .
[6] N. N. Chent︠s︡ov. Statistical decision rules and optimal inference , 1982 .
[7] 甘利 俊一. Differential geometry in statistical inference , 1987 .
[8] R. Kass. The Geometry of Asymptotic Inference , 1989 .
[9] T Poggio,et al. Regularization Algorithms for Learning That Are Equivalent to Multilayer Networks , 1990, Science.
[10] Bernhard E. Boser,et al. A training algorithm for optimal margin classifiers , 1992, COLT '92.
[11] C. R. Rao,et al. Information and the Accuracy Attainable in the Estimation of Statistical Parameters , 1992 .
[12] S. Yau,et al. Lectures on Differential Geometry , 1994 .
[13] David D. Lewis,et al. A comparison of two learning algorithms for text categorization , 1994 .
[14] S. Rosenberg. The Laplacian on a Riemannian Manifold: The Laplacian on a Riemannian Manifold , 1997 .
[15] R. Kass,et al. Geometrical Foundations of Asymptotic Inference , 1997 .
[16] S. Rosenberg. The Laplacian on a Riemannian Manifold: The Construction of the Heat Kernel , 1997 .
[17] A. Grigor’yan,et al. The Heat Kernel on Hyperbolic Space , 1998 .
[18] Alan Thornton Gous,et al. Exponential and spherical subfamily models , 1998 .
[19] David Haussler,et al. Exploiting Generative Models in Discriminative Classifiers , 1998, NIPS.
[20] John Shawe-Taylor,et al. Covering numbers for support vector machines , 1999, COLT '99.
[21] Tom M. Mitchell,et al. Learning to construct knowledge bases from the World Wide Web , 2000, Artif. Intell..
[22] Shun-ichi Amari,et al. Methods of information geometry , 2000 .
[23] M. C. Chaki. ON STATISTICAL MANIFOLDS , 2000 .
[24] Peter L. Bartlett,et al. Rademacher and Gaussian Complexities: Risk Bounds and Structural Results , 2003, J. Mach. Learn. Res..
[25] Nello Cristianini,et al. Composite Kernels for Hypertext Categorisation , 2001, ICML.
[26] John D. Lafferty,et al. A study of smoothing methods for language models applied to Ad Hoc information retrieval , 2001, SIGIR '01.
[27] Thorsten Joachims,et al. The Maximum-Margin Approach to Learning Text Classifiers , 2001, Künstliche Intell..
[28] Mikhail Belkin,et al. Using Manifold Stucture for Partially Labeled Classification , 2002, NIPS.
[29] Mikhail Belkin,et al. Using manifold structure for partially labelled classification , 2002, NIPS 2002.
[30] John D. Lafferty,et al. Diffusion Kernels on Graphs and Other Discrete Input Spaces , 2002, ICML.
[31] John D. Lafferty,et al. Information Diffusion Kernels , 2002, NIPS.
[32] Shahar Mendelson,et al. On the Performance of Kernel Classes , 2003, J. Mach. Learn. Res..
[33] Nuno Vasconcelos,et al. A Kullback-Leibler Divergence Based Kernel for SVM Classification in Multimedia Applications , 2003, NIPS.
[34] Tong Zhang,et al. Text Categorization Based on Regularized Linear Classification Methods , 2001, Information Retrieval.
[35] P. Bartlett,et al. Local Rademacher complexities , 2005, math/0508275.