An Analysis of Online Twitter Sentiment Surrounding the European Refugee Crisis

Using existing natural language and sentiment analysis techniques, this study explores different dimensions of mood states of tweet content relating to the refugee crisis in Europe. The study has two main goals. The first goal is to compare the mood states of negative emotion, positive emotion, anger and anxiety across two populations (English and German speaking). The second goal is to discover if a link exists between significant real-world events relating to the refugee crisis and online sentiment on Twitter. Gaining an insight into this comparison and relationship can help us firstly, to better understand how these events shape public attitudes towards refugees and secondly, how online expressions of emotion are affected by significant events.