Virus removal in a pilot-scale 'advanced' pond system as indicated by somatic and F-RNA bacteriophages.

Advanced pond systems (APS), incorporating high-rate ponds, algal settling ponds, and maturation ponds, typically achieve better and more consistent disinfection as indicated by Escherichia coli than conventional waste stabilisation ponds. To see whether this superior disinfection extends also to enteric viruses, we studied the removal of somatic phages ('model' viruses) in a pilot-scale APS treating sewage. Measurements through the three aerobic stages of the APS showed fairly good removal of somatic phage in the summer months (2.2 log reduction), but much less effective removal in winter (0.45 log reduction), whereas E. coli was removed efficiently (> 4 logs) in both seasons. A very steep depth-gradient of sunlight inactivation of somatic phage in APS pond waters (confined in silica test tubes) is consistent with inactivation mainly by solar UVB wavelengths. Data for F-RNA phage suggests involvement of longer UV wavelengths. These findings imply that efficiency of virus removal in APS will vary seasonally with variation in solar UV radiation.